Newer
Older
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
# TODO: Try to infer data type from loaded_metadata
# as.integer(data_array)
}
failed_pieces <- work_pieces[which(unlist(found_files))]
for (failed_piece in failed_pieces) {
array_of_not_found_files <- do.call('[<-',
c(list(array_of_not_found_files),
as.list(failed_piece[['file_indices_in_array_of_files']]),
list(value = TRUE)))
}
if (any(array_of_not_found_files)) {
for (i in 1:prod(dim(array_of_files_to_load))) {
if (is.na(array_of_not_found_files[i])) {
array_of_files_to_load[i] <- NA
} else {
if (array_of_not_found_files[i]) {
array_of_not_found_files[i] <- array_of_files_to_load[i]
array_of_files_to_load[i] <- NA
} else {
array_of_not_found_files[i] <- NA
}
}
}
} else {
array_of_not_found_files <- NULL
}
} # End if (retrieve)
else { # if retrieve = FALSE, metadata still needs to reshape
if (merge_across_dims & (split_multiselected_dims | merge_across_dims_narm)) {
if (!merge_across_dims_narm) {
tmp <- match(names(final_dims), names(dims_of_merge_dim))
if (any(diff(tmp[!is.na(tmp)]) < 0)) { #need to reorder
picked_common_vars[[across_inner_dim]] <- .aperm2(picked_common_vars[[across_inner_dim]], tmp[!is.na(tmp)])
}
metadata_tmp <- picked_common_vars[[across_inner_dim]]
} else {
tmp <- remove_additional_na_from_merge(
data_array = NULL,
merge_dim_metadata = picked_common_vars[[across_inner_dim]],
metadata_tmp <- tmp$merge_dim_metadata
}
stop(paste0("After reshaping, the metadata do not fit into the expected output dimension. ",
"Check if the reshaping parameters are used correctly or contact support."))
}
#NOTE: When one file contains values for dicrete dimensions, rearrange the
# chunks (i.e., work_piece) is necessary.
if (split_multiselected_dims) {
tmp <- rebuild_array_merge_split(
data_array = NULL, metadata = metadata_tmp, indices_chunk,
all_split_dims, final_dims_fake, across_inner_dim, length_inner_across_dim)
# If split_multiselected_dims + merge_across_dims, the dimension order may change above.
# To get the user-required dim order, we need to reorder the array again.
if (split_multiselected_dims) {
if (inner_dim_pos_in_split_dims != 1) {
correct_order <- match(names(final_dims_fake_output), names(final_dims_fake))
# data_array <- .aperm2(data_array, correct_order)
correct_order_metadata <- match(names(final_dims_fake_output), names(all_split_dims[[across_inner_dim]]))
metadata_tmp <- .aperm2(metadata_tmp, correct_order_metadata[!is.na(correct_order_metadata)])
}
}
# Convert numeric back to dates
if ('time' %in% synonims[[across_inner_dim]]) {
metadata_tmp <- as.POSIXct(metadata_tmp, origin = "1970-01-01", tz = 'UTC')
}
picked_common_vars[[across_inner_dim]] <- metadata_tmp
attr(picked_common_vars[[across_inner_dim]], 'variables') <- saved_reshaped_attr
} else { # ! (merge_across_dims + split_multiselected_dims) (old version)
if (merge_across_dims) {
# merge_across_dims = TRUE but (merge_across_dims_narm = F & split_multiselected_dims = F)
inner_dim_pos <- which(names(dims_of_merge_dim) == inner_dims_across_files)
file_dim_pos <- which(names(dims_of_merge_dim) == names(inner_dims_across_files))
if (file_dim_pos < inner_dim_pos) { #need to reorder
tmp <- seq(1, length(dims_of_merge_dim))
tmp[inner_dim_pos] <- file_dim_pos
tmp[file_dim_pos] <- inner_dim_pos
picked_common_vars[[across_inner_dim]] <- .aperm2(picked_common_vars[[across_inner_dim]], tmp)
}
metadata_tmp <- array(picked_common_vars[[across_inner_dim]], dim = final_dims_fake_metadata)
# Convert numeric back to dates
if ('time' %in% synonims[[across_inner_dim]]) {
metadata_tmp <- as.POSIXct(metadata_tmp, origin = "1970-01-01", tz = 'UTC')
}
picked_common_vars[[across_inner_dim]] <- metadata_tmp
attr(picked_common_vars[[across_inner_dim]], 'variables') <- saved_reshaped_attr
if (split_multiselected_dims & !is.null(picked_common_vars)) {
metadata_tmp <- array(picked_common_vars[[inner_dim_has_split_dim]], dim = final_dims_fake_metadata)
if (inherits(picked_common_vars[[inner_dim_has_split_dim]], 'POSIXct')) {
metadata_tmp <- as.POSIXct(metadata_tmp, origin = "1970-01-01", tz = 'UTC')
}
attr(picked_common_vars[[inner_dim_has_split_dim]], 'variables') <- saved_reshaped_attr
if (!is.null(c(warnings1, warnings2, warnings3))) {
transform_warnings_list <- lapply(c(warnings1, warnings2, warnings3), function(x) {
transform_warnings_list <- unique(transform_warnings_list)
for (i in 1:length(transform_warnings_list)) {
.warning(transform_warnings_list[[i]])
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
# Change final_dims_fake back because retrieve = FALSE will use it for attributes later
if (exists("final_dims_fake_output")) {
final_dims_fake <- final_dims_fake_output
}
# Replace the vars and common vars by the transformed vars and common vars
for (i in 1:length(dat)) {
if (length(names(transformed_vars[[i]])) > 0) {
picked_vars[[i]][names(transformed_vars[[i]])] <- transformed_vars[[i]]
} else if (length(names(picked_vars_ordered[[i]])) > 0) {
picked_vars[[i]][names(picked_vars_ordered[[i]])] <- picked_vars_ordered[[i]]
}
}
if (length(names(transformed_common_vars)) > 0) {
picked_common_vars[names(transformed_common_vars)] <- transformed_common_vars
} else if (length(names(picked_common_vars_ordered)) > 0) {
picked_common_vars[names(picked_common_vars_ordered)] <- picked_common_vars_ordered
}
if (debug) {
print("-> THE TRANSFORMED VARS:")
print(str(transformed_vars))
print("-> THE PICKED VARS:")
print(str(picked_vars))
}
file_selectors <- NULL
for (i in 1:length(dat)) {
file_selectors[[dat[[i]][['name']]]] <- dat[[i]][['selectors']][which(names(dat[[i]][['selectors']]) %in% found_file_dims[[i]])]
}
if (retrieve) {
if (!silent) {
.message("Successfully retrieved data.")
}
if (all(sapply(return_metadata, is.null))) {
# We don't have metadata of the variable (e.g., tas). The returned metadata list only
# contains those are specified in argument "return_vars".
Variables_list <- c(list(common = picked_common_vars), picked_vars)
.warning(paste0("Metadata cannot be retrieved. The reason may be the ",
"non-existence of the first file. Use parameter 'metadata_dims'",
" to assign to file dimensions along which to return metadata, ",
"or check the existence of the first file."))
} else {
# Add the metadata of the variable (e.g., tas) into the list of picked_vars or
# picked_common_vars.
Variables_list <- combine_metadata_picked_vars(
return_metadata, picked_vars, picked_common_vars,
metadata_dims, pattern_dims, length(dat))
Files = array_of_files_to_load,
NotFoundFiles = array_of_not_found_files,
FileSelectors = file_selectors,
ObjectBigmemory = name_bigmemory_obj) #attr(shared_matrix_pointer, 'description')$sharedName)
)
attr(data_array, 'class') <- c('startR_array', attr(data_array, 'class'))
data_array
if (!silent) {
.message("Successfully discovered data dimensions.")
}
start_call <- match.call()
for (i in 2:length(start_call)) {
if (class(start_call[[i]]) %in% c('name', 'call')) {
tmp <- eval.parent(start_call[[i]])
if (is.null(tmp)) {
start_call[i] <- list(NULL)
} else {
start_call[[i]] <- eval.parent(start_call[[i]])
}
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
}
}
start_call[['retrieve']] <- TRUE
attributes(start_call) <- c(attributes(start_call),
list(Dimensions = final_dims_fake,
Variables = c(list(common = picked_common_vars), picked_vars),
ExpectedFiles = array_of_files_to_load,
FileSelectors = file_selectors,
PatternDim = found_pattern_dim,
MergedDims = if (merge_across_dims) {
inner_dims_across_files
} else {
NULL
},
SplitDims = if (split_multiselected_dims) {
all_split_dims
} else {
NULL
})
)
attr(start_call, 'class') <- c('startR_cube', attr(start_call, 'class'))
start_call
}
}
# This function is the responsible for loading the data of each work
# piece.
.LoadDataFile <- function(work_piece, shared_matrix_pointer,
file_data_reader, synonims,
transform, transform_params, transform_crop_domain = NULL,
nperez
committed
#warning(attr(shared_matrix_pointer, 'description')$sharedName)
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
# suppressPackageStartupMessages({library(bigmemory)})
### TODO: Specify dependencies as parameter
# suppressPackageStartupMessages({library(ncdf4)})
#print("1")
store_indices <- as.list(work_piece[['store_position']])
first_round_indices <- work_piece[['first_round_indices']]
second_round_indices <- work_piece[['second_round_indices']]
#print("2")
file_to_open <- work_piece[['file_path']]
sub_array <- file_data_reader(file_to_open, NULL,
work_piece[['file_selectors']],
first_round_indices, synonims)
if (debug) {
if (all(unlist(store_indices[1:6]) == 1)) {
print("-> LOADING A WORK PIECE")
print("-> STRUCTURE OF READ UNTRANSFORMED DATA:")
print(str(sub_array))
print("-> STRUCTURE OF VARIABLES TO TRANSFORM:")
print(str(work_piece[['vars_to_transform']]))
print("-> COMMON ARRAY DIMENSIONS:")
print(str(work_piece[['store_dims']]))
}
}
if (!is.null(sub_array)) {
# Apply data transformation once we have the data arrays.
if (!is.null(transform)) {
if (debug) {
if (all(unlist(store_indices[1:6]) == 1)) {
print("-> PROCEEDING TO TRANSFORM ARRAY")
print("-> DIMENSIONS OF ARRAY RIGHT BEFORE TRANSFORMING:")
print(dim(sub_array))
}
}
sub_array <- do.call(transform, c(list(data_array = sub_array,
variables = work_piece[['vars_to_transform']],
file_selectors = work_piece[['file_selectors']],
crop_domain = transform_crop_domain),
transform_params))
if (debug) {
if (all(unlist(store_indices[1:6]) == 1)) {
print("-> STRUCTURE OF ARRAY AND VARIABLES RIGHT AFTER TRANSFORMING:")
print(str(sub_array))
print("-> DIMENSIONS OF ARRAY RIGHT AFTER TRANSFORMING:")
print(dim(sub_array$data_array))
}
}
sub_array <- sub_array$data_array
# Subset with second round of indices
dims_to_crop <- which(!sapply(second_round_indices, is.null))
if (length(dims_to_crop) > 0) {
dimnames_to_crop <- names(second_round_indices)[dims_to_crop]
sub_array <- ClimProjDiags::Subset(sub_array, dimnames_to_crop,
second_round_indices[dimnames_to_crop])
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
}
if (debug) {
if (all(unlist(store_indices[1:6]) == 1)) {
print("-> STRUCTURE OF ARRAY AND VARIABLES RIGHT AFTER SUBSETTING WITH 2nd ROUND INDICES:")
print(str(sub_array))
}
}
}
metadata <- attr(sub_array, 'variables')
names_bk <- names(store_indices)
store_indices <- lapply(names(store_indices),
function (x) {
if (!(x %in% names(first_round_indices))) {
store_indices[[x]]
} else if (is.null(second_round_indices[[x]])) {
1:dim(sub_array)[x]
} else {
if (is.numeric(second_round_indices[[x]])) {
## TODO: Review carefully this line. Inner indices are all
## aligned to the left-most positions. If dataset A has longitudes
## 1, 2, 3, 4 but dataset B has only longitudes 3 and 4, then
## they will be stored as follows:
## 1, 2, 3, 4
## 3, 4, NA, NA
##x - min(x) + 1
1:length(second_round_indices[[x]])
} else {
1:length(second_round_indices[[x]])
}
}
})
names(store_indices) <- names_bk
if (debug) {
if (all(unlist(store_indices) == 1)) {
print("-> STRUCTURE OF FIRST ROUND INDICES FOR THIS WORK PIECE:")
print(str(first_round_indices))
print("-> STRUCTURE OF SECOND ROUND INDICES FOR THIS WORK PIECE:")
print(str(second_round_indices))
print("-> STRUCTURE OF STORE INDICES FOR THIS WORK PIECE:")
print(str(store_indices))
}
}
store_indices <- lapply(store_indices, as.integer)
store_dims <- work_piece[['store_dims']]
# split the storage work of the loaded subset in parts
largest_dim_name <- names(dim(sub_array))[which.max(dim(sub_array))]
max_parts <- length(store_indices[[largest_dim_name]])
# Indexing a data file of N MB with expand.grid takes 30*N MB
# The peak ram of Start is, minimum, 2 * total data to load from all files
# due to inefficiencies in other regions of the code
# The more parts we split the indexing done below in, the lower
# the memory footprint of the indexing and the fast.
# But more than 10 indexing iterations (parts) for each MB processed
# makes the iteration slower (tested empirically on BSC workstations).
subset_size_in_mb <- prod(dim(sub_array)) * 8 / 1024 / 1024
best_n_parts <- ceiling(subset_size_in_mb * 10)
# We want to set n_parts to a greater value than the one that would
# result in a memory footprint (of the subset indexing code below) equal
# to 2 * total data to load from all files.
# s = subset size in MB
# p = number of parts to break it in
# T = total size of data to load
# then, s / p * 30 = 2 * T
# then, p = s * 15 / T
min_n_parts <- ceiling(prod(dim(sub_array)) * 15 / prod(store_dims))
# Make sure we pick n_parts much greater than the minimum calculated
n_parts <- min_n_parts * 10
if (n_parts > best_n_parts) {
n_parts <- best_n_parts
}
# Boundary checks
if (n_parts < 1) {
n_parts <- 1
}
if (n_parts > max_parts) {
n_parts <- max_parts
}
if (n_parts > 1) {
make_parts <- function(length, n) {
clusters <- cut(1:length, n, labels = FALSE)
lapply(1:n, function(y) which(clusters == y))
}
part_indices <- make_parts(max_parts, n_parts)
parts <- lapply(part_indices,
function(x) {
store_indices[[largest_dim_name]][x]
})
} else {
part_indices <- list(1:max_parts)
parts <- store_indices[largest_dim_name]
}
# do the storage work
weights <- sapply(1:length(store_dims),
function(i) prod(c(1, store_dims)[1:i]))
part_indices_in_sub_array <- as.list(rep(TRUE, length(dim(sub_array))))
names(part_indices_in_sub_array) <- names(dim(sub_array))
data_array <- bigmemory::attach.big.matrix(shared_matrix_pointer)
for (i in 1:n_parts) {
store_indices[[largest_dim_name]] <- parts[[i]]
# Converting array indices to vector indices
matrix_indices <- do.call("expand.grid", store_indices)
# Given a matrix where each row is a set of array indices of an element
# the vector indices are computed
matrix_indices <- 1 + colSums(t(matrix_indices - 1) * weights)
part_indices_in_sub_array[[largest_dim_name]] <- part_indices[[i]]
data_array[matrix_indices] <- as.vector(do.call('[',
c(list(x = sub_array),
part_indices_in_sub_array)))
}
rm(data_array)
gc()
if (!is.null(work_piece[['save_metadata_in']])) {
saveRDS(metadata, file = work_piece[['save_metadata_in']])
}
}
if (!is.null(work_piece[['progress_amount']]) && !silent) {
message(work_piece[['progress_amount']], appendLF = FALSE)
}
is.null(sub_array)
}