Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# Practical guide for using startR at BSC
In this guide, some practical examples are shown for you to see how to use startR to process large data sets in parallel on your Earth Sciences department workstation or on the BSC's HPCs.
In order to do so, you need to understand 4 functions, all of them included in the startR package:
- Start() --> for declaing the data sets to process
- Step() and AddStep() --> for specifying the operation to be applied to the data
- Compute() --> for specifying the HPC to be employed, the number of chunks and cores, and to trigger the computation
## Start()
In order to declare the data sets you want to process, you first need to specify a special path that shows where all the involved NetCDF files you want to process are stored, containing some wildcards in those parts of the path that vary across files. This special path is also called "path pattern".
Before defining an example path pattern, let's introduce some target NetCDF files. In esarchive, we can find the following files:
```
/esarchive/exp/ecmwf/system5_m1/6hourly/
|--tas/
| |--tas_19930101.nc
| |--tas_19930201.nc
| | ...
| |--tas_20171201.nc
|--tos/
|--tos_19930101.nc
|--tos_19930201.nc
| ...
|--tos_20171201.nc
```
A path pattern that could be used to define the location of these files in a compact way is the following:
```r
repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$/$var$_$sdate$.nc'
```
The names of the wildcards used (the pieces wrapped between '$' symbols) can be given any names.
Once the path pattern is specified, a Start() call can be built, requesting the values of interest for each of the wildcards (also called outer dimensions), as well as for each of the dimensions inside the NetCDF files (inner dimensions).
You can check in advance which dimensions are inside the NetCDF files by checking one of them with the basic NetCDF tools:
```
ncdump -h /esarchive/exp/ecmwf/system5_m1/6hourly/tas/tas_19930101.nc
```
This would REVELAR the following inner dimensions: 'ensemble', 'time', 'latitude', and 'longitude'.
We can now put the Start call together:
```r
data <- Start(dat = repos,
# outer dimensions
var = 'tas',
sdate = '19930101',
# inner dimensions
ensemble = 'all',
time = 'all',
latitude = 'all',
longitude = 'all')
```
This will yield some output messages:
```r
* Exploring files... This will take a variable amount of time depending
* on the issued request and the performance of the file server...
* Detected dimension sizes:
* dat: 1
* var: 1
* sdate: 1
* ensemble: 25
* time: 860
* latitude: 640
* longitude: 1296
* Total size of involved data:
* 1 x 1 x 1 x 25 x 860 x 640 x 1296 x 8 bytes = 132.9 Gb
* Successfully discovered data dimensions.
Warning messages:
1: ! Warning: Parameter 'pattern_dims' not specified. Taking the first dimension,
! 'dat' as 'pattern_dims'.
2: ! Warning: Could not find any pattern dim with explicit data set descriptions (in
! the form of list of lists). Taking the first pattern dim, 'dat', as
! dimension with pattern specifications.
```
The warnings shown are normal, and could be avoided with a more wordy specification of the parameters to the Start function.
The dimensions of the selected data set and the total size are shown.
As you will notice, this Start call is very fast, even though several GB of data are involved. This is because Start is simply discovering the location and dimension of the involved data. You can give a quick look to the collected metadata with `str(data)`.
```r
Class 'startR_header' length 9 Start(dat = "/esarchive/exp/ecmwf/system5_m1/6hourly/$var$/$var$_$sdate$.nc", var = "tas", sdate = "19930101", ensemble = "all", time = "all", latitude = "all", ...
..- attr(*, "Dimensions")= Named num [1:7] 1 1 1 25 860 ...
.. ..- attr(*, "names")= chr [1:7] "dat" "var" "sdate" "ensemble" ...
..- attr(*, "Variables")=List of 2
.. ..$ common: NULL
.. ..$ dat1 : NULL
..- attr(*, "ExpectedFiles")= chr [1, 1, 1] "/esarchive/exp/ecmwf/system5_m1/6hourly/tas/tas_19930101.nc"
..- attr(*, "FileSelectors")=List of 1
.. ..$ dat1:List of 3
.. .. ..$ dat :List of 1
.. .. .. ..$ : chr "dat1"
.. .. ..$ var :List of 1
.. .. .. ..$ : chr "tas"
.. .. ..$ sdate:List of 1
.. .. .. ..$ : chr "19930101"
..- attr(*, "PatternDim")= chr "dat"
```
There are no constrains for the numer or names of the outer or inner dimensions. In other words, Start will handle NetCDF files with any number of dimensions with any name, as well as files distributed in complex ways, since you can use customized wildcards in the path pattern.
If you are interested in actually loading the entire data set in your machine *(be careful!)* you can do so in two ways:
- adding the parameter `retrieve = TRUE` in your Start call.
- evaluating the object returned by Start: `data_load <- eval(data)`
You may realize that this functionality is similar to the `Load()` function in the s2dverification package. In fact, `Start()` is more advanced and flexible, although `Load()` is more mature and consistent for loading classic seasonal to decadal forecasting data. `Load()` will be adapted in the future to use `Start()` internally.
As you can see in the Start call we issued, we have requested specific values for the outer dimensions (e.g. `var = 'tas'` or `sdate = '19930101'`), but vectors of multiple values, numeric indices, or keywords can be used. For example, `var = c('tas', 'tos')`, `sdate = 1:5` or `sdate = 'all'`. See the documentation on the Start function on GitLab (https://earth.bsc.es/gitlab/es/startR/blob/master/vignettes/start.md) or in `?Start` for more information.
## Step() and AddStep()
Once the data sources are declared, we can define the operation to be applied. The operation needs to be encapsulated in the form of an R function receiving one or more multidimensional arrays (plus additional helper parameters) and returning one or more multidimensional arrays. For example:
```r
fun <- function(x) {
r <- sqrt(sum(x ^ 2) / length(x))
for (i in 1:100) {
r <- sqrt(sum(x ^ 2) / length(x))
}
dim(r) <- c(time = 1)
r
}
```
Then, the startR Step for this operation can be defined with the function `Step`, which required for a proper functioning to specify the names of the dimensions of the input arrays expected by the function (in this example, a single array with the dimensions 'ensemble' and 'time'), as well as the names of the dimensions the function returns:
```r
step <- Step(fun = fun,
target_dims = c('ensemble', 'time'),
output_dims = c('time'))
```
Finally, a workflow of steps can be assembled as follows:
```r
wf <- AddStep(data, step)
```
If multiple data sources were to be provided to a step, they could be provided as a list.
It is not possible for now to define workflows with more than one step. This is pending future work.
what about defining library(blabla) in the code of the function? how to deal with that?
## Compute() locally
Once the data sources are declared and the workflow is defined, we can proceed to specify the execution parameters (including which platform to run on) and trigger the execution.
required ecFlow?
required CDO?
```r
res <- Compute(wf,
chunks = list(latitude = 2,
longitude = 2),
threads_load = 1,
threads_compute = 2,
#cluster = list(queue_host = 'p9login1.bsc.es',
# queue_type = 'slurm',
# data_dir = '/gpfs/projects/bsc32/share/startR_data_repos/gpfs/archive/bsc32/',
# temp_dir = '/gpfs/scratch/bsc32/bsc32473/startR_tests/',
# lib_dir = '/gpfs/projects/bsc32/share/R_libs/3.5/',
# #init_commands = list('module load intel/16.0.1'),
# r_module = 'R/3.5.0',
# #ecflow_module = 'ecFlow/4.9.0-foss-2015a',
# #node_memory = NULL, #not working
# cores_per_job = 2,
# job_wallclock = '00:10:00',
# max_jobs = 4,
# extra_queue_params = list('#SBATCH --qos=bsc_es'),
# bidirectional = FALSE,
# polling_period = 10#,
# #special_setup = 'marenostrum4'
# ),
#ecflow_suite_dir = '/home/Earth/nmanuben/test_remove/',
#ecflow_server = NULL,
silent = FALSE,
debug = FALSE,
wait = FALSE)
```
compute will return a data array, as if it was a variable in your R session
discuss ecFlow
discuss plotProfiling
discuss use of metadata (dates) in the Step
summary of all code done so far:
## Compute() on HPC
setup steps:
having startR installed on workstation and HPC (done)
having Step dependencies on HPC
having passwordless connection (how to?)
having rsync, ssh, ... on all machines
ecflow??
having the data:
- either on a shared file system
- either on remote file systems (rsync)
- either on remote file systems (with special transfer mechanism, mn4)
not required to ssh manually to the HPC
example on power9
```r
library(startR)
#repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$/$var$_$sdate$.nc'
repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$-longitudeS1latitudeS1all/$var$_$sdate$.nc'
data <- Start(dat = repos,
var = 'tas',
#sdate = 'all',
sdate = indices(1),
ensemble = 'all',
time = 'all',
#latitude = 'all',
latitude = indices(1:40),
#longitude = 'all',
longitude = indices(1:40),
retrieve = FALSE)
lons <- attr(data, 'Variables')$common$longitude
lats <- attr(data, 'Variables')$common$latitude
fun <- function(x) apply(x + 1, 2, mean)
step <- Step(fun, c('ensemble', 'time'), c('time'))
wf <- AddStep(data, step)
res <- Compute(wf,
chunks = list(latitude = 2,
longitude = 2),
threads_load = 1,
threads_compute = 2,
cluster = list(queue_host = 'p9login1.bsc.es',
queue_type = 'slurm',
data_dir = '/gpfs/projects/bsc32/share/startR_data_repos/gpfs/archive/bsc32/',
temp_dir = '/gpfs/scratch/bsc32/bsc32473/startR_tests/',
lib_dir = '/gpfs/projects/bsc32/share/R_libs/3.5/',
#init_commands = list('module load intel/16.0.1'),
r_module = 'R/3.5.0-foss-2018b',
#ecflow_module = 'ecFlow/4.9.0-foss-2015a',
#node_memory = NULL, #not working
cores_per_job = 2,
job_wallclock = '00:10:00',
max_jobs = 4,
extra_queue_params = list('#SBATCH --qos=bsc_es'),
bidirectional = FALSE,
polling_period = 10#,
#special_setup = 'marenostrum4'
),
ecflow_suite_dir = '/home/Earth/nmanuben/test_remove/',
ecflow_server = NULL,
silent = FALSE,
debug = FALSE,
wait = TRUE)
```
## Example using obs data / or more than one data source
```r
crps <- function(x, y) {
mean(SpecsVerification::EnsCrps(x, y, R.new = Inf))
}
library(startR)
repos <- '/perm/ms/spesiccf/c3ah/qa4seas/data/seasonal/g1x1/ecmf-system4/msmm/atmos/seas/tprate/12/ecmf-system4_msmm_atmos_seas_sfc_$date$_tprate_g1x1_init12.nc'
data <- Start(dat = repos,
var = 'tprate',
date = 'all',
time = 'all',
number = 'all',
latitude = 'all',
longitude = 'all',
return_vars = list(time = 'date'))
dates <- attr(data, 'Variables')$common$time
repos <- '/perm/ms/spesiccf/c3ah/qa4seas/data/ecmf-ei_msmm_atmos_seas_sfc_19910101-20161201_t2m_g1x1_init02.nc'
obs <- Start(dat = repos,
var = 't2m',
time = values(dates),
latitude = 'all',
longitude = 'all',
split_multiselected_dims = TRUE)
s <- Step(crps, target_dims = list(c('date', 'number'), c('date')),
output_dims = NULL)
wf <- AddStep(list(data, obs), s)
r <- Compute(wf,
chunks = list(latitude = 10,
longitude = 3),
cluster = list(queue_host = 'cca',
queue_type = 'pbs',
max_jobs = 10,
init_commands = list('module load ecflow'),
r_module = 'R/3.3.1',
extra_queue_params = list('#PBS -l EC_billing_account=spesiccf')),
ecflow_output_dir = '/perm/ms/spesiccf/c3ah/startR_test/',
is_ecflow_output_dir_shared = FALSE
)
```
```r
repos <- paste0('/esnas/exp/ecmwf/system4_m1/6hourly/',
'$var$/$var$_$sdate$.nc')
system4 <- Start(dat = repos,
var = 'sfcWind',
#sdate = paste0(1981:2015, '1101'),
sdate = paste0(1981:1984, '1101'),
#time = indices((30*4+1):(120*4)),
time = indices((30*4+1):(30*4+4)),
ensemble = 'all',
#ensemble = indices(1:6),
#latitude = 'all',
latitude = indices(1:10),
#longitude = 'all',
longitude = indices(1:10),
return_vars = list(latitude = NULL,
longitude = NULL,
time = c('sdate')))
repos <- paste0('/esnas/recon/ecmwf/erainterim/6hourly/',
'$var$/$var$_$file_date$.nc')
dates <- attr(system4, 'Variables')$common$time
dates_file <- sort(unique(gsub('-', '', sapply(as.character(dates),
substr, 1, 7))))
erai <- Start(dat = repos,
var = 'sfcWind',
file_date = dates_file,
time = values(dates),
#latitude = 'all',
latitude = indices(1:10),
#longitude = 'all',
longitude = indices(1:10),
time_var = 'time',
time_tolerance = as.difftime(1, units = 'hours'),
time_across = 'file_date',
return_vars = list(latitude = NULL,
longitude = NULL,
time = 'file_date'),
merge_across_dims = TRUE,
split_multiselected_dims = TRUE)
step <- Step(eqmcv_atomic,
list(a = c('ensemble', 'sdate'),
b = c('sdate')),
list(c = c('ensemble', 'sdate')))
res <- Compute(step, list(system4, erai),
chunks = list(latitude = 5,
longitude = 5,
time = 2),
cluster = list(queue_host = 'bsceslogin01.bsc.es',
max_jobs = 4,
cores_per_job = 2),
shared_dir = '/esnas/scratch/nmanuben/test_bychunk',
wait = FALSE)
```
## Example on marenostrum 4
```r
library(startR)
#repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$/$var$_$sdate$.nc'
repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$-longitudeS1latitudeS1all/$var$_$sdate$.nc'
data <- Start(dat = repos,
var = 'tas',
#sdate = 'all',
sdate = indices(1),
ensemble = 'all',
time = 'all',
#latitude = 'all',
latitude = indices(1:40),
#longitude = 'all',
longitude = indices(1:40),
retrieve = FALSE)
lons <- attr(data, 'Variables')$common$longitude
lats <- attr(data, 'Variables')$common$latitude
fun <- function(x) apply(x + 1, 2, mean)
step <- Step(fun, c('ensemble', 'time'), c('time'))
wf <- AddStep(data, step)
res <- Compute(wf,
chunks = list(latitude = 2,
longitude = 2),
threads_load = 1,
threads_compute = 2,
cluster = list(queue_host = 'mn2.bsc.es',
queue_type = 'slurm',
data_dir = '/gpfs/projects/bsc32/share/startR_data_repos/',
temp_dir = '/gpfs/scratch/pr1efe00/pr1efe03/startR_tests/',
lib_dir = '/gpfs/projects/bsc32/share/R_libs/3.4/',
#init_commands = list('module load netcdf/4.4.1.1'),
r_module = 'R/3.4.0',
#ecflow_module = 'ecFlow/4.9.0-foss-2015a',
#node_memory = NULL, #not working
cores_per_job = 2,
job_wallclock = '00:10:00',
max_jobs = 4,
extra_queue_params = list('#SBATCH --qos=prace'),
bidirectional = FALSE,
polling_period = 10,
special_setup = 'marenostrum4'
),
ecflow_suite_dir = '/home/Earth/nmanuben/test_remove/',
ecflow_server = NULL,
silent = FALSE,
debug = FALSE,
wait = TRUE)
```
## Example on cca