Skip to content
GitLab
Projects Groups Topics Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in
  • startR startR
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributor statistics
    • Graph
    • Compare revisions
  • Issues 29
    • Issues 29
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 7
    • Merge requests 7
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Earth SciencesEarth Sciences
  • startRstartR
  • Issues
  • #75
Closed
Open
Issue created Oct 08, 2020 by Llorenç Lledó@llledoDeveloper

Start() should retrieve data with the largest dimension length

Hello,

when loading Seasonal predictions, sometimes the hindcast has a reduced ensemble (less members) compared to the operational forecasts of the same dataset. When this happens, Start() reads the dimensions from the first file in the sdates and then is not able to load all the members.

I've tried to specify the indices of the members with the option ensemble=indices(1:51) but then it fails.

Minimal working example: SEAS5 has 25 members in the hindcast and 51 in the fcst. In this case only 40 members are loaded (the ensemble size of CMCC hindcast).

ltmin <- 20
ltmax <- 80
lnmin <- 270
lnmax <- 60
tmp1 <- Start(
        dataset = c( "/esarchive/exp/ecmwf/system5c3s/monthly_mean/g500_f12h/$var$_$sdate$.nc",
        "/esarchive/exp/cmcc/system3_m1-c3s/monthly_mean/g500_f12h/$var$_$sdate$.nc"),                                           
        var = "g500", sdate = c("19931101","20200901"),
        time = 'all',
        ensemble = 'all',
        latitude = values(list(ltmin, ltmax)),      
        latitude_reorder = Sort(decreasing = T),              
        longitude = values(list(lnmin, lnmax)),              
        longitude_reorder = CircularSort(0, 360),         
        synonims = list(longitude = c('lon', 'longitude'),                              
                        latitude = c('lat', 'latitude')),              
        transform = CDORemapper,
        transform_extra_cells = 2,              
        transform_params = list(grid = 'r360x181',                                     
                                method = 'conservative',                                      
                                crop = c(lnmin, lnmax, ltmin, ltmax)),              
        transform_vars = c('latitude', 'longitude'),              
        return_vars = list(     time = NULL,
                                latitude = 'dataset',                            
                                longitude = 'dataset'),          
        retrieve = T)
Assignee
Assign to
Time tracking