PATC 2023 SUNSET hands-on
Hi @aho
This is a potential recipe for the 2023 PATC tutorial. On WS, this data takes about 2 minutes to load, and the whole workflow took around 7 minutes to run. We could make it shorter by reducing the number of forecast time steps (for example, running 2 or 3 instead of 6).
I chose the EU region because we already have the parameters to adjust the plot size thanks to Núria's work.
Let me know your thoughts on the data size and running time.
Description:
Author: V. Agudetse
Description: Analysis of MF System 7 with temperature
Analysis:
Horizon: Seasonal
Variables:
name: tas
freq: monthly_mean
Datasets:
System:
name: Meteo-France-System7
Multimodel: False
Reference:
name: ERA5
Time:
sdate: '1101'
fcst_year: '2020'
hcst_start: '1993'
hcst_end: '2016'
ftime_min: 1
ftime_max: 6
Region:
name: "EU"
latmin: 20
latmax: 80
lonmin: -20
lonmax: 40
Regrid:
method: bilinear
type: to_system
Workflow:
Anomalies:
compute: yes # yes/no, default yes
cross_validation: yes # yes/no, default yes
save: 'none' # 'all'/'none'/'exp_only'/'fcst_only'
Calibration:
method: evmos
save: 'none' # 'all'/'none'/'exp_only'/'fcst_only'
Skill:
metric: RPSS BSS10 BSS90
cross_validation: yes
save: 'all' # 'all'/'none'
Probabilities:
percentiles: [[1/3, 2/3], [1/10, 9/10]]
save: 'none' # 'all'/'none'/'bins_only'/'percentiles_only'
Visualization:
plots: skill_metrics, forecast_ensemble_mean, most_likely_terciles
multi_panel: no
projection: cylindrical_equidistant
Indicators:
index: no
ncores: 10
remove_NAs: yes
Output_format: S2S4E
Run:
Loglevel: INFO
Terminal: yes
output_dir: /esarchive/scratch/vagudets/auto-s2s-outputs/
code_dir: /esarchive/scratch/vagudets/repos/auto-s2s/