Newer
Older
#'Save objects of class 's2dv_cube' to data in NetCDF format
#'
#'@author Perez-Zanon Nuria, \email{nuria.perez@bsc.es}
#'
#'@description This function allows to divide and save a object of class
#''s2dv_cube' into a NetCDF file, allowing to reload the saved data using
#'\code{CST_Start} or \code{CST_Load} functions. It also allows to save any
#''s2dv_cube' object that follows the NetCDF attributes conventions.
#'@param data An object of class \code{s2dv_cube}.
#'@param destination A character string containing the directory name in which
#' to save the data. NetCDF file for each starting date are saved into the
#' folder tree: 'destination/Dataset/variable/'. By default the function
#' saves the data into the working directory.
#'@param sdate_dim A character string indicating the name of the start date
#' dimension. By default, it is set to 'sdate'. It can be NULL if there is no
#' start date dimension.
#'@param ftime_dim A character string indicating the name of the forecast time
#' dimension. If 'Dates' are used, it can't be NULL. If there is no forecast
#' time dimension, 'Dates' will be set to NULL and will not be used. By
#' default, it is set to 'time'.
#'@param dat_dim A character string indicating the name of dataset dimension.
#' It can be NULL if there is no dataset dimension. By default, it is set to
#' 'dataset'.
#'@param var_dim A character string indicating the name of variable dimension.
#' It can be NULL if there is no variable dimension. By default, it is set to
#' 'var'.
#'@param memb_dim A character string indicating the name of the member dimension.
#' It can be NULL if there is no member dimension. By default, it is set to
#' 'member'.
#'@param startdates A vector of dates that will be used for the filenames
#' when saving the data in multiple files (single_file = FALSE). It must be a
#' vector of the same length as the start date dimension of data. It must be a
#' vector of class \code{Dates}, \code{'POSIXct'} or character with lenghts
#' between 1 and 10. If it is NULL, the coordinate corresponding the the start
#' date dimension or the first Date of each time step will be used as the name
#' of the files. It is NULL by default.
#'@param single_file A logical value indicating if all object is saved in a
#' single file (TRUE) or in multiple files (FALSE). When it is FALSE,
#' the array is separated for datasets, variable and start date. When there are
#' no specified time dimensions, the data will be saved in a single file by
#' default. The output file name when 'single_file' is TRUE is a character
#' string containing: '<var>_<first_sdate>_<last_sdate>.nc'; when it is FALSE,
#' it is '<var>_<sdate>.nc'. It is FALSE by default.
#'@param drop_dims (optional) A vector of character strings indicating the
#' dimension names of length 1 that need to be dropped in order that they don't
#' appear in the netCDF file. Only is allowed to drop dimensions that are not
#' used in the computation. The dimensions used in the computation are the ones
#' specified in: sdate_dim, ftime_dim, dat_dim, var_dim and memb_dim. It is
#' NULL by default.
#'@param extra_string (Optional) A character string to be included as part of
#' the file name, for instance, to identify member or realization. When
#' single_file is TRUE, the 'extra_string' will substitute all the default
#' file name; when single_file is FALSE, the 'extra_string' will be added
#' in the file name as: '<var>_<extra_string>_<sdate>.nc'. It is NULL by default.
#'@param units_hours_since (Optional) A logical value only used for the case
#' Dates have forecast time and start date dimension and single_file is TRUE.
#' When it is TRUE, it saves the forecast time with units of 'hours since';
#' if it is FALSE, the time units will be a number of time steps with its
#' corresponding frequency (e.g. n days, n months or n hours). It is TRUE
#' by default.
#'@param global_attrs (Optional) A list with elements containing the global
#' attributes to be saved in the NetCDF.
#'@return Multiple or single NetCDF files containing the data array.\cr
#' All data is saved in a single file located in the specified destination
#' path with the following name (by default):
#' '<variable_name>_<first_sdate>_<last_sdate>.nc'. Multiple variables
#' are saved separately in the same file. The forecast time units
#' are calculated from each start date (if sdate_dim is not NULL) or from
#' the time step. If 'units_hours_since' is TRUE, the forecast time units
#' will be 'hours since <each start date>'. If 'units_hours_since' is FALSE,
#' the forecast time units are extracted from the frequency of the time steps
#' (hours, days, months); if no frequency is found, the units will be ’hours
#' since’. When the time units are 'hours since' the time ateps are assumed to
#' be equally spaced.
#' The data array is subset and stored into multiple files. Each file
#' contains the data subset for each start date, variable and dataset. Files
#' with different variables and datasets are stored in separated directories
#' within the following directory tree: 'destination/Dataset/variable/'.
#' The name of each file will be by default: '<variable_name>_<sdate>.nc'.
#' The forecast time units are calculated from each start date (if sdate_dim
#' is not NULL) or from the time step. The forecast time units will be 'hours
#' since <each start date>'.
#'
#'@seealso \code{\link[startR]{Start}}, \code{\link{as.s2dv_cube}} and
#'\code{\link{s2dv_cube}}
#'CST_SaveExp(data = data, ftime_dim = 'ftime', var_dim = 'var',
#' dat_dim = 'dataset', sdate_dim = 'sdate')
CST_SaveExp <- function(data, destination = "./", sdate_dim = 'sdate',
ftime_dim = 'time', dat_dim = 'dataset',
var_dim = 'var', memb_dim = 'member',
startdates = NULL, drop_dims = NULL,
single_file = FALSE, extra_string = NULL,
global_attrs = NULL, units_hours_since = TRUE) {
stop("Parameter 'data' must be of the class 's2dv_cube'.")
# Check object structure
if (!all(c('data', 'attrs') %in% names(data))) {
stop("Parameter 'data' must have at least 'data' and 'attrs' elements ",
"within the 's2dv_cube' structure.")
}
if (!inherits(data$attrs, 'list')) {
stop("Level 'attrs' must be a list with at least 'Dates' element.")
}
if (!all(c('coords') %in% names(data))) {
warning("Element 'coords' not found. No coordinates will be used.")
}
# metadata
if (!is.null(data$attrs$Variable$metadata)) {
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
if (!inherits(data$attrs$Variable$metadata, 'list')) {
stop("Element metadata from Variable element in attrs must be a list.")
}
if (!any(names(data$attrs$Variable$metadata) %in% names(data$coords))) {
warning("Metadata is not found for any coordinate.")
} else if (!any(names(data$attrs$Variable$metadata) %in%
data$attrs$Variable$varName)) {
warning("Metadata is not found for any variable.")
}
}
# Dates
if (is.null(data$attrs$Dates)) {
stop("Element 'Dates' from 'attrs' level cannot be NULL.")
}
if (is.null(dim(data$attrs$Dates))) {
stop("Element 'Dates' from 'attrs' level must have time dimensions.")
}
# sdate_dim
if (!is.null(sdate_dim)) {
if (!is.character(sdate_dim)) {
stop("Parameter 'sdate_dim' must be a character string.")
}
if (length(sdate_dim) > 1) {
warning("Parameter 'sdate_dim' has length greater than 1 and ",
"only the first element will be used.")
sdate_dim <- sdate_dim[1]
}
} else if (length(dim(data$attrs$Dates)) == 1) {
sdate_dim <- 'sdate'
dim(data$data) <- c(sdate = 1, dim(data$data))
data$dims <- dim(data$data)
dim(data$attrs$Dates) <- c(sdate = 1, dim(data$attrs$Dates))
data$coords[[sdate_dim]] <- data$attrs$Dates[1]
}
# ftime_dim
if (is.null(ftime_dim)) {
data$attrs$Dates <- NULL
}
# startdates
if (is.null(startdates)) {
if (is.character(data$coords[[sdate_dim]])) {
startdates <- data$coords[[sdate_dim]]
}
}
if (!is.null(startdates)) {
if (!is.null(sdate_dim)) {
if (dim(data$data)[sdate_dim] != length(startdates)) {
warning(paste0("Parameter 'startdates' doesn't have the same length ",
"as dimension '", sdate_dim,"', it will not be used."))
startdates <- data$coords[[sdate_dim]]
}
destination = destination,
Dates = data$attrs$Dates,
coords = data$coords,
varname = data$attrs$Variable$varName,
metadata = data$attrs$Variable$metadata,
Datasets = data$attrs$Datasets,
startdates = startdates,
dat_dim = dat_dim, sdate_dim = sdate_dim,
ftime_dim = ftime_dim, var_dim = var_dim,
memb_dim = memb_dim,
drop_dims = drop_dims,
extra_string = extra_string,
single_file = single_file,
global_attrs = global_attrs,
units_hours_since = units_hours_since)
}
#'Save a multidimensional array with metadata to data in NetCDF format
#'@description This function allows to save a data array with metadata into a
#'NetCDF file, allowing to reload the saved data using \code{Start} function
#'from StartR package. If the original 's2dv_cube' object has been created from
#'\code{CST_Load()}, then it can be reloaded with \code{Load()}.
#'
#'@author Perez-Zanon Nuria, \email{nuria.perez@bsc.es}
#'
#'@param data A multi-dimensional array with named dimensions.
#'@param destination A character string indicating the path where to store the
#' NetCDF files.
#'@param Dates A named array of dates with the corresponding sdate and forecast
#' time dimension. If there is no sdate_dim, you can set it to NULL.
#' It must have ftime_dim dimension.
#'@param coords A named list with elements of the coordinates corresponding to
#' the dimensions of the data parameter. The names and length of each element
#' must correspond to the names of the dimensions. If any coordinate is not
#' provided, it is set as an index vector with the values from 1 to the length
#' of the corresponding dimension.
#'@param varname A character string indicating the name of the variable to be
#'@param metadata A named list where each element is a variable containing the
#' corresponding information. The information must be contained in a list of
#' lists for each variable.
#'@param Datasets A vector of character string indicating the names of the
#' datasets.
#'@param sdate_dim A character string indicating the name of the start date
#' dimension. By default, it is set to 'sdate'. It can be NULL if there is no
#' start date dimension.
#'@param ftime_dim A character string indicating the name of the forecast time
#' dimension. By default, it is set to 'time'. It can be NULL if there is no
#' forecast time dimension.
#'@param dat_dim A character string indicating the name of dataset dimension.
#' By default, it is set to 'dataset'. It can be NULL if there is no dataset
#' dimension.
#'@param var_dim A character string indicating the name of variable dimension.
#' By default, it is set to 'var'. It can be NULL if there is no variable
#' dimension.
#'@param memb_dim A character string indicating the name of the member dimension.
#' By default, it is set to 'member'. It can be NULL if there is no member
#' dimension.
#'@param startdates A vector of dates that will be used for the filenames
#' when saving the data in multiple files (single_file = FALSE). It must be a
#' vector of the same length as the start date dimension of data. It must be a
#' vector of class \code{Dates}, \code{'POSIXct'} or character with lenghts
#' between 1 and 10. If it is NULL, the coordinate corresponding the the start
#' date dimension or the first Date of each time step will be used as the name
#' of the files. It is NULL by default.
#'@param single_file A logical value indicating if all object is saved in a
#' single file (TRUE) or in multiple files (FALSE). When it is FALSE,
#' the array is separated for datasets, variable and start date. When there are
#' no specified time dimensions, the data will be saved in a single file by
#' default. The output file name when 'single_file' is TRUE is a character
#' string containing: <var>_<first_sdate>_<last_sdate>.nc; when it is FALSE,
#' it is <var>_<sdate>.nc. It is FALSE by default.
#'@param drop_dims (optional) A vector of character strings indicating the
#' dimension names of length 1 that need to be dropped in order that they don't
#' appear in the netCDF file. Only is allowed to drop dimensions that are not
#' used in the computation. The dimensions used in the computation are the ones
#' specified in: sdate_dim, ftime_dim, dat_dim, var_dim and memb_dim. It is
#' NULL by default.
#'@param extra_string (Optional) A character string to be included as part of
#' the file name, for instance, to identify member or realization. When
#' single_file is TRUE, the 'extra_string' will substitute all the default
#' file name; when single_file is FALSE, the 'extra_string' will be added
#' in the file name as: <var>_<extra_string>_<sdate>.nc. It is NULL by default.
#'@param units_hours_since (Optional) A logical value only used for the case
#' Dates have forecast time and start date dimension and single_file is TRUE.
#' When it is TRUE, it saves the forecast time with units of 'hours since';
#' if it is FALSE, the time units will be a number of time steps with its
#' corresponding frequency (e.g. n days, n months or n hours). It is TRUE
#' by default.
#'@param global_attrs (Optional) A list with elements containing the global
#' attributes to be saved in the NetCDF.
#'@return Multiple or single NetCDF files containing the data array.\cr
#' All data is saved in a single file located in the specified destination
#' path with the following name (by default):
#' '<variable_name>_<first_sdate>_<last_sdate>.nc'. Multiple variables
#' are saved separately in the same file. The forecast time units
#' are calculated from each start date (if sdate_dim is not NULL) or from
#' the time step. If 'units_hours_since' is TRUE, the forecast time units
#' will be 'hours since <each start date>'. If 'units_hours_since' is FALSE,
#' the forecast time units are extracted from the frequency of the time steps
#' (hours, days, months); if no frequency is found, the units will be ’hours
#' since’. When the time units are 'hours since' the time ateps are assumed to
#' be equally spaced.
#'\item{\code{single_file is FALSE}}{
#' The data array is subset and stored into multiple files. Each file
#' contains the data subset for each start date, variable and dataset. Files
#' with different variables and datasets are stored in separated directories
#' within the following directory tree: 'destination/Dataset/variable/'.
#' The name of each file will be by default: '<variable_name>_<sdate>.nc'.
#' The forecast time units are calculated from each start date (if sdate_dim
#' is not NULL) or from the time step. The forecast time units will be 'hours
#' since <each start date>'.
#'data <- lonlat_temp_st$exp$data
#'lon <- lonlat_temp_st$exp$coords$lon
#'lat <- lonlat_temp_st$exp$coords$lat
#'Datasets <- lonlat_temp_st$exp$attrs$Datasets
#'Dates <- lonlat_temp_st$exp$attrs$Dates
#'metadata <- lonlat_temp_st$exp$attrs$Variable$metadata
#'SaveExp(data = data, coords = coords, Datasets = Datasets, varname = varname,
#' Dates = Dates, metadata = metadata, single_file = TRUE,
#' ftime_dim = 'ftime', var_dim = 'var', dat_dim = 'dataset')
#'@importFrom s2dv Reorder
#'@import multiApply
#'@importFrom ClimProjDiags Subset
SaveExp <- function(data, destination = "./", Dates = NULL, coords = NULL,
varname = NULL, metadata = NULL, Datasets = NULL,
startdates = NULL, dat_dim = 'dataset', sdate_dim = 'sdate',
ftime_dim = 'time', var_dim = 'var', memb_dim = 'member',
drop_dims = NULL, single_file = FALSE, extra_string = NULL,
global_attrs = NULL, units_hours_since = TRUE) {
## Initial checks
# data
if (is.null(data)) {
stop("Parameter 'data' cannot be NULL.")
}
dimnames <- names(dim(data))
if (is.null(dimnames)) {
stop("Parameter 'data' must be an array with named dimensions.")
}
# destination
if (!is.character(destination) | length(destination) > 1) {
stop("Parameter 'destination' must be a character string of one element ",
"indicating the name of the file (including the folder if needed) ",
"where the data will be saved.")
}
# Dates
if (!is.null(Dates)) {
if (!any(inherits(Dates, "POSIXct"), inherits(Dates, "Date"))) {
stop("Parameter 'Dates' must be of 'POSIXct' or 'Dates' class.")
}
if (is.null(dim(Dates))) {
stop("Parameter 'Dates' must have dimension names.")
}
}
Eva Rifà
committed
# drop_dims
if (!is.null(drop_dims)) {
if (!is.character(drop_dims) | any(!drop_dims %in% names(dim(data)))) {
warning("Parameter 'drop_dims' must be character string containing ",
"the data dimension names to be dropped. It will not be used.")
} else if (!all(dim(data)[drop_dims] %in% 1)) {
warning("Parameter 'drop_dims' can only contain dimension names ",
"that are of length 1. It will not be used.")
} else if (any(drop_dims %in% c(ftime_dim, sdate_dim, dat_dim, memb_dim, var_dim))) {
warning("Parameter 'drop_dims' contains dimensions used in the computation. ",
"It will not be used.")
drop_dims <- NULL
Eva Rifà
committed
} else {
data <- Subset(x = data, along = drop_dims,
indices = lapply(1:length(drop_dims), function(x) 1),
drop = 'selected')
dimnames <- names(dim(data))
}
}
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# coords
if (!is.null(coords)) {
if (!all(names(coords) %in% dimnames)) {
coords <- coords[-which(!names(coords) %in% dimnames)]
}
for (i_coord in dimnames) {
if (i_coord %in% names(coords)) {
if (length(coords[[i_coord]]) != dim(data)[i_coord]) {
warning(paste0("Coordinate '", i_coord, "' has different lenght as ",
"its dimension and it will not be used."))
coords[[i_coord]] <- 1:dim(data)[i_coord]
}
} else {
coords[[i_coord]] <- 1:dim(data)[i_coord]
}
}
} else {
coords <- sapply(dimnames, function(x) 1:dim(data)[x])
}
# varname
if (is.null(varname)) {
varname <- 'X'
} else if (length(varname) > 1) {
multiple_vars <- TRUE
} else {
multiple_vars <- FALSE
}
if (!all(sapply(varname, is.character))) {
stop("Parameter 'varname' must be a character string with the ",
"variable names.")
}
# single_file
if (!inherits(single_file, 'logical')) {
warning("Parameter 'single_file' must be a logical value. It will be ",
"set as FALSE.")
single_file <- FALSE
if (!is.null(extra_string)) {
if (!is.character(extra_string)) {
stop("Parameter 'extra_string' must be a character string.")
}
}
# global_attrs
if (!is.null(global_attrs)) {
if (!inherits(global_attrs, 'list')) {
stop("Parameter 'global_attrs' must be a list.")
}
}
## Dimensions checks
# Spatial coordinates
if (!any(dimnames %in% .KnownLonNames()) |
!any(dimnames %in% .KnownLatNames())) {
lon_dim <- NULL
lat_dim <- NULL
} else {
lon_dim <- dimnames[which(dimnames %in% .KnownLonNames())]
lat_dim <- dimnames[which(dimnames %in% .KnownLatNames())]
}
# ftime_dim
if (!is.null(ftime_dim)) {
if (!is.character(ftime_dim)) {
stop("Parameter 'ftime_dim' must be a character string.")
}
if (!all(ftime_dim %in% dimnames)) {
stop("Parameter 'ftime_dim' is not found in 'data' dimension. Set it ",
"as NULL if there is no forecast time dimension.")
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
}
}
# sdate_dim
if (!is.null(sdate_dim)) {
if (!is.character(sdate_dim)) {
stop("Parameter 'sdate_dim' must be a character string.")
}
if (!all(sdate_dim %in% dimnames)) {
stop("Parameter 'sdate_dim' is not found in 'data' dimension.")
}
}
# memb_dim
if (!is.null(memb_dim)) {
if (!is.character(memb_dim)) {
stop("Parameter 'memb_dim' must be a character string.")
}
if (!all(memb_dim %in% dimnames)) {
stop("Parameter 'memb_dim' is not found in 'data' dimension. Set it ",
"as NULL if there is no member dimension.")
}
}
# dat_dim
if (!is.null(dat_dim)) {
if (!is.character(dat_dim)) {
stop("Parameter 'dat_dim' must be a character string.")
}
if (!all(dat_dim %in% dimnames)) {
stop("Parameter 'dat_dim' is not found in 'data' dimension. Set it ",
"as NULL if there is no Datasets dimension.")
}
if (length(dat_dim) > 1) {
warning("Parameter 'dat_dim' has length greater than 1 and ",
"only the first element will be used.")
dat_dim <- dat_dim[1]
}
n_datasets <- dim(data)[dat_dim]
} else {
n_datasets <- 1
}
# var_dim
if (!is.null(var_dim)) {
if (!is.character(var_dim)) {
stop("Parameter 'var_dim' must be a character string.")
}
if (!all(var_dim %in% dimnames)) {
stop("Parameter 'var_dim' is not found in 'data' dimension. Set it ",
"as NULL if there is no variable dimension.")
}
n_vars <- dim(data)[var_dim]
} else {
n_vars <- 1
}
# minimum dimensions
if (all(dimnames %in% c(var_dim, dat_dim))) {
if (!single_file) {
warning("Parameter data has only ",
paste(c(var_dim, dat_dim), collapse = ' and '), " dimensions ",
"and it cannot be splitted in multiple files. All data will ",
"be saved in a single file.")
single_file <- TRUE
}
}
# Dates dimension check
if (!is.null(Dates)) {
if (is.null(ftime_dim)) {
stop("Parameter 'Dates' must have 'ftime_dim'.")
}
if (all(c(ftime_dim, sdate_dim) %in% names(dim(Dates)))) {
if (any(!names(dim(Dates)) %in% c(ftime_dim, sdate_dim))) {
if (all(dim(Dates)[!names(dim(Dates)) %in% c(ftime_dim, sdate_dim)] == 1)) {
dim(Dates) <- dim(Dates)[names(dim(Dates)) %in% c(ftime_dim, sdate_dim)]
} else {
stop("Parameter 'Dates' must have only 'sdate_dim' and 'ftime_dim' dimensions.")
}
}
if (is.null(startdates)) {
startdates <- Subset(Dates, along = ftime_dim, 1, drop = 'selected')
} else if (any(nchar(startdates) > 10, nchar(startdates) < 1)) {
warning("Parameter 'startdates' should be a character string containing ",
"the start dates in the format 'yyyy-mm-dd', 'yyyymmdd', 'yyyymm', ",
"'POSIXct' or 'Dates' class. Files will be named with Dates instead.")
startdates <- Subset(Dates, along = ftime_dim, 1, drop = 'selected')
if (any(inherits(startdates, "POSIXct"), inherits(startdates, "Date"))) {
startdates <- format(startdates, "%Y%m%d")
}
} else if (any(ftime_dim %in% names(dim(Dates)))) {
if (all(dim(Dates)[!names(dim(Dates)) %in% c(ftime_dim)] == 1)) {
dim(Dates) <- dim(Dates)[names(dim(Dates)) %in% c(ftime_dim, sdate_dim)]
}
} else if (!single_file) {
warning("Dates must be provided if 'data' must be saved in separated files. ",
"All data will be saved in a single file.")
single_file <- TRUE
}
# startdates
if (is.null(startdates)) {
if (is.null(sdate_dim)) {
startdates <- 'XXX'
} else {
startdates <- rep('XXX', dim(data)[sdate_dim])
}
}
# Datasets
if (is.null(Datasets)) {
Datasets <- rep('XXX', n_datasets )
if (inherits(Datasets, 'list')) {
Datasets <- names(Datasets)
if (n_datasets > length(Datasets)) {
warning("Dimension 'Datasets' in 'data' is greater than those listed in ",
"element 'Datasets' and the first element will be reused.")
Datasets <- c(Datasets, rep(Datasets[1], n_datasets - length(Datasets)))
} else if (n_datasets < length(Datasets)) {
warning("Dimension 'Datasets' in 'data' is smaller than those listed in ",
"element 'Datasets' and only the firsts elements will be used.")
Datasets <- Datasets[1:n_datasets]
## Unknown dimensions check
alldims <- c(dat_dim, var_dim, sdate_dim, lon_dim, lat_dim, memb_dim, ftime_dim)
if (!all(dimnames %in% alldims)) {
unknown_dims <- dimnames[which(!dimnames %in% alldims)]
memb_dim <- c(memb_dim, unknown_dims)
alldims <- c(dat_dim, var_dim, sdate_dim, lon_dim, lat_dim, memb_dim, ftime_dim)
}
# Reorder
if (any(dimnames != alldims)) {
data <- Reorder(data, alldims)
dimnames <- names(dim(data))
if (!is.null(attr(data, 'dimensions'))) {
attr(data, 'dimensions') <- dimnames
}
}
## NetCDF dimensions definition
defined_dims <- NULL
extra_info_dim <- NULL
if (is.null(Dates)) {
filedims <- dimnames[which(!dimnames %in% c(dat_dim, var_dim))]
} else {
filedims <- dimnames[which(!dimnames %in% c(dat_dim, var_dim, sdate_dim, ftime_dim))]
}
for (i_coord in filedims) {
# vals
if (i_coord %in% names(coords)) {
if (is.numeric(coords[[i_coord]])) {
coords[[i_coord]] <- as.vector(coords[[i_coord]])
coords[[i_coord]] <- 1:dim(data)[i_coord]
}
dim(coords[[i_coord]]) <- dim(data)[i_coord]
## metadata
if (i_coord %in% names(metadata)) {
if ('variables' %in% names(attributes(metadata[[i_coord]]))) {
# from Start: 'lon' or 'lat'
attrs <- attributes(metadata[[i_coord]])[['variables']]
attrs[[i_coord]]$dim <- NULL
attr(coords[[i_coord]], 'variables') <- attrs
} else if (inherits(metadata[[i_coord]], 'list')) {
# from Start and Load: main var
attr(coords[[i_coord]], 'variables') <- list(metadata[[i_coord]])
names(attributes(coords[[i_coord]])$variables) <- i_coord
} else if (!is.null(attributes(metadata[[i_coord]]))) {
# from Load
attrs <- attributes(metadata[[i_coord]])
# We remove because some attributes can't be saved
attrs <- NULL
attr(coords[[i_coord]], 'variables') <- list(attrs)
names(attributes(coords[[i_coord]])$variables) <- i_coord
# Reorder coords
coords[c(names(coords)[!names(coords) %in% filedims])] <- NULL
coords <- coords[filedims]
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
defined_vars <- list()
if (!single_file) {
for (i in 1:n_datasets) {
path <- file.path(destination, Datasets[i], varname)
for (j in 1:n_vars) {
dir.create(path[j], recursive = TRUE)
startdates <- gsub("-", "", startdates)
dim(startdates) <- c(length(startdates))
names(dim(startdates)) <- sdate_dim
if (is.null(dat_dim) & is.null(var_dim)) {
data_subset <- data
} else if (is.null(dat_dim)) {
data_subset <- Subset(data, c(var_dim), list(j), drop = 'selected')
} else if (is.null(var_dim)) {
data_subset <- Subset(data, along = c(dat_dim), list(i), drop = 'selected')
} else {
data_subset <- Subset(data, c(dat_dim, var_dim), list(i, j), drop = 'selected')
}
if (is.null(Dates)) {
input_data <- list(data_subset, startdates)
target_dims <- list(c(lon_dim, lat_dim, memb_dim, ftime_dim), NULL)
} else {
input_data <- list(data_subset, startdates, Dates)
target_dims = list(c(lon_dim, lat_dim, memb_dim, ftime_dim), NULL, ftime_dim)
}
Apply(data = input_data,
target_dims = target_dims,
ftime_dim = ftime_dim,
varname = varname[j],
metadata_var = metadata[[varname[j]]],
extra_string = extra_string,
global_attrs = global_attrs)
}
}
} else {
# Datasets definition
# From here
if (!is.null(dat_dim)) {
coords[[dat_dim]] <- array(1:dim(data)[dat_dim], dim = dim(data)[dat_dim])
attr(coords[[dat_dim]], 'variables') <- list(list(units = 'adim'))
# extra_info_dim[[dat_dim]] <- list(Datasets = paste(Datasets, collapse = ', '))
if (is.null(sdate_dim)) {
sdates <- Dates[1]
# ftime definition
leadtimes <- as.numeric(difftime(Dates, sdates, units = "hours"))
# sdate definition
sdates <- Subset(Dates, along = ftime_dim, 1, drop = 'selected')
differ <- as.numeric(difftime(sdates, sdates[1], units = "hours"))
# new
dim(differ) <- dim(data)[sdate_dim]
coords[[sdate_dim]] <- differ
attr(coords[[sdate_dim]], 'variables') <- list(list(units = paste('hours since', sdates[1]),
calendar = 'proleptic_gregorian',
longname = sdate_dim))
# ftime definition
Dates <- Reorder(Dates, c(ftime_dim, sdate_dim))
differ_ftime <- array(dim = dim(Dates))
for (i in 1:length(sdates)) differ_ftime[, i] <- as.numeric(difftime(Dates[, i], Dates[1, i],
units = "hours"))
dim(differ_ftime) <- dim(Dates)
leadtimes <- Subset(differ_ftime, along = sdate_dim, 1, drop = 'selected')
if (!all(apply(differ_ftime, 1, function(x){length(unique(x)) == 1}))) {
warning("Time steps are not equal for all start dates. Only ",
"forecast time values for the first start date will be saved ",
"correctly.")
}
if (!units_hours_since) {
if (all(diff(leadtimes/24) == 1)) {
# daily values
units <- 'days'
vals <- round(leadtimes/24) + 1
} else if (all(diff(leadtimes/24) %in% c(28, 29, 30, 31))) {
# monthly values
units <- 'months'
vals <- round(leadtimes/730) + 1
} else {
# other frequency
units <- 'hours'
vals <- leadtimes + 1
}
} else {
units <- paste('hours since', paste(sdates, collapse = ', '))
vals <- leadtimes
}
dim(vals) <- dim(data)[ftime_dim]
coords[[ftime_dim]] <- vals
attr(coords[[ftime_dim]], 'variables') <- list(list(units = units,
longname = ftime_dim,
unlim = TRUE))
}
# var definition
defined_vars <- list()
extra_info_var <- NULL
for (j in 1:n_vars) {
varname_j <- varname[j]
metadata_j <- metadata[[varname_j]]
if (is.null(var_dim)) {
coords[[varname_j]] <- data
coords[[varname_j]] <- Subset(data, var_dim, j, drop = 'selected')
attr(coords[[varname_j]], 'variables') <- list(metadata_j)
names(attributes(coords[[varname_j]])$variables) <- varname_j
# Add global attributes
if (!is.null(global_attrs)) {
attributes(coords[[varname_j]])$global_attrs <- global_attrs
first_sdate <- startdates[1]
last_sdate <- startdates[length(startdates)]
gsub("-", "", first_sdate)
file_name <- paste0(paste(c(varname,
gsub("-", "", first_sdate),
gsub("-", "", last_sdate)),
collapse = '_'), ".nc")
nc <- substr(extra_string, nchar(extra_string)-2, nchar(extra_string))
if (nc == ".nc") {
file_name <- extra_string
} else {
file_name <- paste0(extra_string, ".nc")
full_filename <- file.path(destination, file_name)
ArrayToNc(coords, full_filename)
.saveexp <- function(data, coords, destination = "./",
startdates = NULL, dates = NULL,
ftime_dim = 'time', varname = 'var',
metadata_var = NULL, extra_string = NULL,
global_attrs = NULL) {
differ <- as.numeric(difftime(dates, dates[1], units = "hours"))
dim(differ) <- dim(data)[ftime_dim]
coords[[ftime_dim]] <- differ
attr(coords[[ftime_dim]], 'variables') <- list(list(units = paste('hours since', dates[1]),
calendar = 'proleptic_gregorian',
longname = ftime_dim, unlim = TRUE))
names(attributes(coords[[ftime_dim]])$variables) <- ftime_dim
}
# Add data
coords[[varname]] <- data
if (!is.null(metadata_var)) {
metadata_var$dim <- NULL
attr(coords[[varname]], 'variables') <- list(metadata_var)
names(attributes(coords[[varname]])$variables) <- varname
}
# Add global attributes
if (!is.null(global_attrs)) {
attributes(coords[[varname]])$global_attrs <- global_attrs
file_name <- paste0(varname, "_", startdates, ".nc")
file_name <- paste0(varname, "_", extra_string, "_", startdates, ".nc")
full_filename <- file.path(destination, file_name)