User Tools

Site Tools


working_groups:climate_prediction:publications

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
working_groups:climate_prediction:publications [2022/01/28 16:51]
portega
working_groups:climate_prediction:publications [2022/06/14 14:50] (current)
cdelgado [2022]
Line 12: Line 12:
 ===== Peer-reviewed papers =====  ===== Peer-reviewed papers ===== 
 ====2022==== ====2022====
 +  - {{ :publications:cdelgado_jcli_2022.pdf | Delgado-Torres}}, C., M.G. Donat, N. Gonzalez-Reviriego, L-P. Caron, P.J. Athanasiadis, P.A. Bretonnière, N.J. Dunstone, A. Ho, D. Nicoli, K. Pankatz, A. Paxian, N. Pérez-Zanón, M.S. Cabré, B. Solaraju-Murali, A. Soret and F.J. Doblas-Reyes (2022). Multi-model forecast quality assessment of CMIP6 decadal predictions. [[https://journals.ametsoc.org/view/journals/clim/35/13/JCLI-D-21-0811.1.xml| Journal of Climate, 35, 4363-4382, doi:10.1175/JCLI-D-21-0811.1]]. (EUCP, C3S_34c)
   - Döscher, R., M. Acosta, A. Alessandri, P. Anthoni, A. Arneth,T. Arsouze, T. Bergmann, R. Bernadello, S. Bousetta, L.-P. Caron, G. Carver, M. Castrillo, F. Catalano, I. Cvijanovic, P. Davini, E. Dekker, F.J. Doblas-Reyes, D. Docquier, P. Echevarria, U. Fladrich, R. Fuentes-Franco, M. Gröger, J. v. Hardenberg, J. Hieronymus, M.P. Karami, J.-P. Keskinen, T. Koenigk, R. Makkonen, F. Massonnet, M. Ménégoz, P.A. Miller, E. Moreno-Chamarro, L. Nieradzik, T. van Noije, P. Nolan, D. O’Donnell, P. Ollinaho, G. van den Oord, P. Ortega, O. Tintó Prims, A. Ramos, T. Reerink, C. Rousset, Y. Ruprich-Robert, P. Le Sager, T. Schmith, R. Schrödner, F. Serva, V. Sicardi, M. Sloth Madsen, B. Smith, T. Tian, E. Tourigny, P. Uotila, M. Vancoppenolle, S. Wang, D. Wårlind, U. Willén, K. Wyser, S. Yang, X. Yepes-Arbós and Q. Zhang (2022). The EC-Earth3 Earth system model for the Climate Model Intercomparison Project 6. [[https://gmd.copernicus.org/preprints/gmd-2020-446/|Geoscientific Model Development, accepted, doi:10.5194/gmd-2020-446]]    - Döscher, R., M. Acosta, A. Alessandri, P. Anthoni, A. Arneth,T. Arsouze, T. Bergmann, R. Bernadello, S. Bousetta, L.-P. Caron, G. Carver, M. Castrillo, F. Catalano, I. Cvijanovic, P. Davini, E. Dekker, F.J. Doblas-Reyes, D. Docquier, P. Echevarria, U. Fladrich, R. Fuentes-Franco, M. Gröger, J. v. Hardenberg, J. Hieronymus, M.P. Karami, J.-P. Keskinen, T. Koenigk, R. Makkonen, F. Massonnet, M. Ménégoz, P.A. Miller, E. Moreno-Chamarro, L. Nieradzik, T. van Noije, P. Nolan, D. O’Donnell, P. Ollinaho, G. van den Oord, P. Ortega, O. Tintó Prims, A. Ramos, T. Reerink, C. Rousset, Y. Ruprich-Robert, P. Le Sager, T. Schmith, R. Schrödner, F. Serva, V. Sicardi, M. Sloth Madsen, B. Smith, T. Tian, E. Tourigny, P. Uotila, M. Vancoppenolle, S. Wang, D. Wårlind, U. Willén, K. Wyser, S. Yang, X. Yepes-Arbós and Q. Zhang (2022). The EC-Earth3 Earth system model for the Climate Model Intercomparison Project 6. [[https://gmd.copernicus.org/preprints/gmd-2020-446/|Geoscientific Model Development, accepted, doi:10.5194/gmd-2020-446]] 
   - Langehaug, H.R., P. Ortega, F. Counillon, D. Matei, E. Maroon, N. Keenlyside, J. Mignot, Y. Wang, D. Swingedouw, I. Bethke, S. Yang, G. Danabasoglu, A. Bellucci, P. Ruggieri, D. Nicolì and M. Årthun (2022). Propagation of Thermohaline Anomalies and their predictive potential  along the Atlantic water pathway. Journal of Climate, accepted. (RyC_Pablo))   - Langehaug, H.R., P. Ortega, F. Counillon, D. Matei, E. Maroon, N. Keenlyside, J. Mignot, Y. Wang, D. Swingedouw, I. Bethke, S. Yang, G. Danabasoglu, A. Bellucci, P. Ruggieri, D. Nicolì and M. Årthun (2022). Propagation of Thermohaline Anomalies and their predictive potential  along the Atlantic water pathway. Journal of Climate, accepted. (RyC_Pablo))
Line 53: Line 54:
   - Sandu, I., F. Massonnet, G. van Achter, J. Acosta Navarro, G. Arduini, P. Bauer, E. Blockley, N. Bormann, M. Chevallier, J. Day, M. Dahoui, T. Fichefet, D. Flocco, T. Jung, E. Hawkins, S. Laroche, H. Lawrence, J. Kristianssen, E. Moreno-Chamarro, P. Ortega, E. Poan, L. Ponsoni and R. Randriamampianina (2021). The potential of numerical prediction systems to support the design of Arctic observing systems: Insights from the APPLICATE and YOPP projects. [[https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4182| Quarterly Journal of the Royal Meteorological Society, 147, 3863–387, doi:10.1002/qj.4182]]. (APPLICATE, RyC_Pablo)   - Sandu, I., F. Massonnet, G. van Achter, J. Acosta Navarro, G. Arduini, P. Bauer, E. Blockley, N. Bormann, M. Chevallier, J. Day, M. Dahoui, T. Fichefet, D. Flocco, T. Jung, E. Hawkins, S. Laroche, H. Lawrence, J. Kristianssen, E. Moreno-Chamarro, P. Ortega, E. Poan, L. Ponsoni and R. Randriamampianina (2021). The potential of numerical prediction systems to support the design of Arctic observing systems: Insights from the APPLICATE and YOPP projects. [[https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.4182| Quarterly Journal of the Royal Meteorological Society, 147, 3863–387, doi:10.1002/qj.4182]]. (APPLICATE, RyC_Pablo)
   - Seidenglanz, A., P. Athanasiadis, P. Ruggieri, I. Cvijanovic, C. Li and S. Gualdi (2021). Pacific circulation response to eastern Arctic sea ice reduction in seasonal forecast simulations. [[https://link.springer.com/article/10.1007/s00382-021-05830-9|Climate Dynamics, 57, 2687–2700, doi:10.1007/s00382-021-05830-9]]. //Open Access//   - Seidenglanz, A., P. Athanasiadis, P. Ruggieri, I. Cvijanovic, C. Li and S. Gualdi (2021). Pacific circulation response to eastern Arctic sea ice reduction in seasonal forecast simulations. [[https://link.springer.com/article/10.1007/s00382-021-05830-9|Climate Dynamics, 57, 2687–2700, doi:10.1007/s00382-021-05830-9]]. //Open Access//
-  - Smith, D., R. Eade, M. Andrews, H. Ayres, A. Clark, S. Chripko, C. Deser, N. Dunstone, J. Garcia-Serrano, G. Gastineau, L. S. Graff, S. C. Hardiman, B. He, L. Hermanson,  T. Jung, J. Knight, X. Levine, G. Magnusdottir, E. Manzini, D. Matei, M. Mori, R.  Msadek, P. Ortega, Y. Peings, A. A. Scaife, J. A. Screen, M. Seabrook, T. Semmler  M. Sigmond, J. Streffing, L. Sun and A. Walsh (2021). Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nature Communications [accepted]. (APPLICATE, RyC_Pablo) 
   - Solaraju-Murali, B., N. González-Reviriego, L.-P. Caron, A. Ceglar, A. Toreti, M. Zampieri, P.-A. Bretonniere, M. Samso Cabre and F.J. Doblas-Reyes (2021). Multi-annual prediction of drought and heat stress to support decision making in the wheat sector. [[https://www.nature.com/articles/s41612-021-00189-4 | npj Climate and Atmospheric Science, 4, 34, doi:10.1038/s41612-021-00189-4]]. //Open Access// (C3S_34c, EUCP, MED-GOLD, FOCUS-Africa, CLINSA)   - Solaraju-Murali, B., N. González-Reviriego, L.-P. Caron, A. Ceglar, A. Toreti, M. Zampieri, P.-A. Bretonniere, M. Samso Cabre and F.J. Doblas-Reyes (2021). Multi-annual prediction of drought and heat stress to support decision making in the wheat sector. [[https://www.nature.com/articles/s41612-021-00189-4 | npj Climate and Atmospheric Science, 4, 34, doi:10.1038/s41612-021-00189-4]]. //Open Access// (C3S_34c, EUCP, MED-GOLD, FOCUS-Africa, CLINSA)
   - Tang, W., J. Llort, J. Weis, M.M.G. Perron, S. Basart, Z. Li, S. Sathyedranath, T. Jackson, T., E. Sanz Rodriguez, B.C. Proemse, A.R. Bowie, C. Schallenberg, P.G. Strutton, R. Matear and N. Cassar (2021). Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. [[https://www.nature.com/articles/s41586-021-03805-8 | Nature, 597, 370–375, doi:10.1038/s41586-021-03805-8]]. (MESH-STARS J.Llort)   - Tang, W., J. Llort, J. Weis, M.M.G. Perron, S. Basart, Z. Li, S. Sathyedranath, T. Jackson, T., E. Sanz Rodriguez, B.C. Proemse, A.R. Bowie, C. Schallenberg, P.G. Strutton, R. Matear and N. Cassar (2021). Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. [[https://www.nature.com/articles/s41586-021-03805-8 | Nature, 597, 370–375, doi:10.1038/s41586-021-03805-8]]. (MESH-STARS J.Llort)
Line 165: Line 165:
   - {{publications:rwhite_GRL_2019.pdf|White}}, R.H., C. Hilgenbrink and A. Sheshadri (2019). The importance of Greenland in setting the Northern preferred position of the North Atlantic eddy‐driven jet. [[https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084780|Geophysical Research Letters, 46, 14126-14134, doi:10.1029/2019GL084780 ]]. (PROTECT)   - {{publications:rwhite_GRL_2019.pdf|White}}, R.H., C. Hilgenbrink and A. Sheshadri (2019). The importance of Greenland in setting the Northern preferred position of the North Atlantic eddy‐driven jet. [[https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL084780|Geophysical Research Letters, 46, 14126-14134, doi:10.1029/2019GL084780 ]]. (PROTECT)
   - Wills, R.C.J., R.H. White and X.J. Levine (2019). Northern Hemisphere stationary waves in a changing climate. [[https://link.springer.com/article/10.1007%2Fs40641-019-00147-6| Current Climate Change Reports, 5, 372-389, doi:10.1007/s40641-019-00147-6]]. //Open Access// (PROTECT)   - Wills, R.C.J., R.H. White and X.J. Levine (2019). Northern Hemisphere stationary waves in a changing climate. [[https://link.springer.com/article/10.1007%2Fs40641-019-00147-6| Current Climate Change Reports, 5, 372-389, doi:10.1007/s40641-019-00147-6]]. //Open Access// (PROTECT)
-  
   - Yin, H., Y. Sun and M.G. Donat (2019). Changes in temperature extremes on the Tibetan Plateau and their attribution. [[https://iopscience.iop.org/article/10.1088/1748-9326/ab503c|Environmental Research Letters, 14, 124015, https://doi.org/10.1088/1748-9326/ab503c]]. //Open Access// (RyC_Markus)   - Yin, H., Y. Sun and M.G. Donat (2019). Changes in temperature extremes on the Tibetan Plateau and their attribution. [[https://iopscience.iop.org/article/10.1088/1748-9326/ab503c|Environmental Research Letters, 14, 124015, https://doi.org/10.1088/1748-9326/ab503c]]. //Open Access// (RyC_Markus)
  
Line 222: Line 221:
   - {{:publications:obellprat_grl1_2016.pdf|Bellprat}}, O. and F.J. Doblas-Reyes (2016). Attribution of extreme weather and climate events overestimated by unreliable climate simulations. [[http://onlinelibrary.wiley.com/doi/10.1002/2015GL067189/abstract | Geophysical Research Letters, 43, 2158-2164, doi:10.1002/2015GL067189]]. (VERITAS-CCI, EUCLEIA)   - {{:publications:obellprat_grl1_2016.pdf|Bellprat}}, O. and F.J. Doblas-Reyes (2016). Attribution of extreme weather and climate events overestimated by unreliable climate simulations. [[http://onlinelibrary.wiley.com/doi/10.1002/2015GL067189/abstract | Geophysical Research Letters, 43, 2158-2164, doi:10.1002/2015GL067189]]. (VERITAS-CCI, EUCLEIA)
   - Bellprat, O., Massonnet, F., García-Serrano, J., Fučkar, N.S., Guemas, V., and F. Doblas-Reyes (2016). The role of Arctic sea ice and sea surface temperatures on the cold 2015 February over North America. [[http://www.ametsoc.net/eee/2015/8_us_cold_na.pdf|In Explaining Extreme Events of 2015 from a Climate Perspective, Bulletin of American Meteorological Society, 97, S36-S41, doi:10.1175/BAMS-D-16-0159.1]]. //Open Access// (EUCLEIA, SPECS, PRIMAVERA, JdC)   - Bellprat, O., Massonnet, F., García-Serrano, J., Fučkar, N.S., Guemas, V., and F. Doblas-Reyes (2016). The role of Arctic sea ice and sea surface temperatures on the cold 2015 February over North America. [[http://www.ametsoc.net/eee/2015/8_us_cold_na.pdf|In Explaining Extreme Events of 2015 from a Climate Perspective, Bulletin of American Meteorological Society, 97, S36-S41, doi:10.1175/BAMS-D-16-0159.1]]. //Open Access// (EUCLEIA, SPECS, PRIMAVERA, JdC)
- 
   - Camp, J. and L.-P. {{:publications:Camp_Caron_2015.pdf|Caron}} (2016). Analysis of Atlantic tropical cyclone landfall forecasts in coupled GCMs on seasonal and decadal timescales. [[http://www.buchweb.de/buch_9783319475929.html|In Hurricanes and Climate Change, 3rd edition, Springer]]. (RESPONS, SPECS)   - Camp, J. and L.-P. {{:publications:Camp_Caron_2015.pdf|Caron}} (2016). Analysis of Atlantic tropical cyclone landfall forecasts in coupled GCMs on seasonal and decadal timescales. [[http://www.buchweb.de/buch_9783319475929.html|In Hurricanes and Climate Change, 3rd edition, Springer]]. (RESPONS, SPECS)
   - {{:publications:vguemas_clidyn1_2016.pdf|Carrassi}}, A., V. Guemas, F.J. Doblas-Reyes, D. Volpi and M. Asif (2016). Sources of skill in near-term climate prediction. Part I: Generating initial conditions. [[http://link.springer.com/article/10.1007/s00382-016-3036-4|Climate Dynamics, 47, 3693-3712, doi:10.1007/s00382-016-3036-4]]. (INCLIDA, SPECS, PICA-ICE)   - {{:publications:vguemas_clidyn1_2016.pdf|Carrassi}}, A., V. Guemas, F.J. Doblas-Reyes, D. Volpi and M. Asif (2016). Sources of skill in near-term climate prediction. Part I: Generating initial conditions. [[http://link.springer.com/article/10.1007/s00382-016-3036-4|Climate Dynamics, 47, 3693-3712, doi:10.1007/s00382-016-3036-4]]. (INCLIDA, SPECS, PICA-ICE)
working_groups/climate_prediction/publications.1643388664.txt.gz · Last modified: 2022/01/28 16:51 by portega