Newer
Older
#'Interpolate arrays with longitude and latitude dimensions using CDO
#'
#'This function takes as inputs a multidimensional array (optional), a vector
#'or matrix of longitudes, a vector or matrix of latitudes, a destination grid
#'specification, and the name of a method to be used to interpolate (one of
#'those available in the 'remap' utility in CDO). The interpolated array is
#'returned (if provided) together with the new longitudes and latitudes.\cr\cr
#'\code{CDORemap()} permutes by default the dimensions of the input array (if
#'needed), splits it in chunks (CDO can work with data arrays of up to 4
#'dimensions), generates a file with the data of each chunk, interpolates it
#'with CDO, reads it back into R and merges it into a result array. If no
#'input array is provided, the longitude and latitude vectors will be
#'transformed only. If the array is already on the desired destination grid,
#'no transformation is performed (this behvaiour works only for lonlat and
#'gaussian grids). \cr\cr
#'Any metadata attached to the input data array, longitudes or latitudes will
#'be preserved or accordingly modified.
#'
#'@param data_array Multidimensional numeric array to be interpolated. If
#' provided, it must have at least a longitude and a latitude dimensions,
#' identified by the array dimension names. The names for these dimensions
#' must be one of the recognized by s2dverification (can be checked with
#' \code{s2dv:::.KnownLonNames()} and \code{s2dv:::.KnownLatNames()}).
#'@param lons Numeric vector or array of longitudes of the centers of the grid
#' cells. Its size must match the size of the longitude/latitude dimensions
#' of the input array.
#'@param lats Numeric vector or array of latitudes of the centers of the grid
#' cells. Its size must match the size of the longitude/latitude dimensions
#' of the input array.
#'@param grid Character string specifying either a name of a target grid
#' (recognized by CDO; e.g.: 'r256x128', 't106grid') or a path to another
#' NetCDF file which to read the target grid from (a single grid must be
#' defined in such file).
#'@param method Character string specifying an interpolation method
#' (recognized by CDO; e.g.: 'con', 'bil', 'bic', 'dis', 'con2', 'laf', 'nn').
#' The following long names are also supported: 'conservative', 'bilinear',
#' 'bicubic' and 'distance-weighted'.
#'@param avoid_writes The step of permutation is needed when the input array
#' has more than 3 dimensions and none of the longitude or latitude dimensions
#' in the right-most position (CDO would not accept it without permuting
#' previously). This step, executed by default when needed, can be avoided
#' for the price of writing more intermediate files (whis usually is
#' unconvenient) by setting the parameter \code{avoid_writes = TRUE}.
#'@param crop Whether to crop the data after interpolation with
#' 'cdo sellonlatbox' (TRUE) or to extend interpolated data to the whole
#' world as CDO does by default (FALSE). The default value is TRUE.\cr
#' \itemize{
#' \item{
#' If \code{crop = TRUE}, the longitude and latitude borders to be cropped
#' at are taken as the limits of the cells at the borders (not the values
#' of 'lons' and 'lats', which are perceived as cell centers), i.e., the
#' resulting array will contain data that covers the same area as the input
#' array. This is equivalent to specifying \code{crop = 'preserve'}, i.e.,
#' preserving area. Notice that the longitude range of returning array will
#' follow the original data 'lons' instead of the target grid 'grid'.
#' }
#' \item{
#' If \code{crop = FALSE}, the returning array is not cropped, i.e., a
#' global domain, and the longitude range will be the same as the target
#' grid 'grid'.
#' }
#' \item{
#' If \code{crop = 'tight'}, the borders to be cropped at are taken as the
#' minimum and maximum cell centers in 'lons' and 'lats', i.e., the area
#' covered by the resulting array may be smaller if interpolating from a
#' coarse grid to a fine grid.
#' }
#' \item{
#' The parameter 'crop' also accepts a numeric vector of customized borders
#' to be cropped at:\cr
#' c(western border, eastern border, southern border, northern border).
#' }
#' }
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#'@param force_remap Whether to force remapping, even if the input data array
#' is already on the target grid.
#'@param write_dir Path to the directory where to create the intermediate
#' files for CDO to work. By default, the R session temporary directory is
#' used (\code{tempdir()}).
#'
#'@return A list with the following components:
#' \item{'data_array'}{The interpolated data array (if an input array
#' is provided at all, NULL otherwise).}
#' \item{'lons'}{The longitudes of the data on the destination grid.}
#' \item{'lats'}{The latitudes of the data on the destination grid.}
#'@examples
#' \dontrun{
#'# Interpolating only vectors of longitudes and latitudes
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'lat <- seq(-90, 90, length.out = 25)
#'tas2 <- CDORemap(NULL, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Minimal array interpolation
#'tas <- array(1:50, dim = c(25, 50))
#'names(dim(tas)) <- c('lat', 'lon')
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'lat <- seq(-90, 90, length.out = 25)
#'tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Metadata can be attached to the inputs. It will be preserved and
#'# accordignly modified.
#'tas <- array(1:50, dim = c(25, 50))
#'names(dim(tas)) <- c('lat', 'lon')
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = 25)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(lat = list(len = 25,
#' vals = lat),
#' lon = list(len = 50,
#' vals = lon)
#' )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Arrays of any number of dimensions in any order can be provided.
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10),
#' dim = c(10, num_lats, 10, num_lons, 10))
#'names(dim(tas)) <- c('a', 'lat', 'b', 'lon', 'c')
#'lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = num_lats)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(a = list(),
#' lat = list(len = num_lats,
#' vals = lat),
#' b = list(),
#' lon = list(len = num_lons,
#' vals = lon),
#' c = list()
#' )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
#'# The step of permutation can be avoided but more intermediate file writes
#'# will be performed.
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'
#'# If the provided array has the longitude or latitude dimension in the
#'# right-most position, the same number of file writes will be performed,
#'# even if avoid_wrties = FALSE.
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10),
#' dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'lat', 'b', 'lon')
#'lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = num_lats)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(a = list(),
#' lat = list(len = num_lats,
#' vals = lat),
#' b = list(),
#' lon = list(len = num_lons,
#' vals = lon)
#' )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'
#'# An example of an interpolation from and onto a rectangular regular grid
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(1*num_lats*num_lons), dim = c(num_lats, num_lons))
#'names(dim(tas)) <- c('y', 'x')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons),
#' dim = c(num_lons, num_lats))
#'metadata <- list(lon = list(units = 'degrees_east'))
#'names(dim(lon)) <- c('x', 'y')
#'attr(lon, 'variables') <- metadata
#'lat <- t(array(seq(-90, 90, length.out = num_lats),
#' dim = c(num_lats, num_lons)))
#'metadata <- list(lat = list(units = 'degrees_north'))
#'names(dim(lat)) <- c('x', 'y')
#'attr(lat, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 'r100x50', 'bil')
#'
#'# An example of an interpolation from an irregular grid onto a gaussian grid
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10),
#' dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'j', 'b', 'i')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons),
#' dim = c(num_lons, num_lats))
#'metadata <- list(lon = list(units = 'degrees_east'))
#'names(dim(lon)) <- c('i', 'j')
#'attr(lon, 'variables') <- metadata
#'lat <- t(array(seq(-90, 90, length.out = num_lats),
#' dim = c(num_lats, num_lons)))
#'metadata <- list(lat = list(units = 'degrees_north'))
#'names(dim(lat)) <- c('i', 'j')
#'attr(lat, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')
#'
#'# Again, the dimensions can be in any order
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons),
#' dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'j', 'b', 'i')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons),
#' dim = c(num_lons, num_lats))
#'names(dim(lon)) <- c('i', 'j')
#'lat <- t(array(seq(-90, 90, length.out = num_lats),
#' dim = c(num_lats, num_lons)))
#'names(dim(lat)) <- c('i', 'j')
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'# It is ossible to specify an external NetCDF file as target grid reference
#'tas2 <- CDORemap(tas, lon, lat, 'external_file.nc', 'bil')
#'}
#'@import ncdf4
#'@importFrom easyNCDF ArrayToNc
#'@importFrom stats lm predict setNames
#'@export
CDORemap <- function(data_array = NULL, lons, lats, grid, method,
avoid_writes = TRUE, crop = TRUE,
force_remap = FALSE, write_dir = tempdir()) { #, mask = NULL) {
.isRegularVector <- function(x, tol = 0.1) {
if (length(x) < 2) {
#stop("The provided vector must be of length 2 or greater.")
TRUE
} else {
spaces <- x[2:length(x)] - x[1:(length(x) - 1)]
(sum(abs(spaces - mean(spaces)) > mean(spaces) / (1 / tol)) < 2)
}
}
# Check parameters data_array, lons and lats.
known_lon_names <- .KnownLonNames()
known_lat_names <- .KnownLatNames()
if (!is.numeric(lons) || !is.numeric(lats)) {
stop("Expected numeric 'lons' and 'lats'.")
}
stop("Found invalid values in 'lons'.")
}
stop("Found invalid values in 'lats'.")
}
if (is.null(dim(lons))) {
dim(lons) <- length(lons)
}
if (is.null(dim(lats))) {
dim(lats) <- length(lats)
}
if (length(dim(lons)) > 2 || length(dim(lats)) > 2) {
stop("'lons' and 'lats' can only have up to 2 dimensions.")
}
if (length(dim(lons)) != length(dim(lats))) {
stop("'lons' and 'lats' must have the same number of dimensions.")
}
if (length(dim(lons)) == 2 && !all(dim(lons) == dim(lats))) {
stop("'lons' and 'lats' must have the same dimension sizes.")
}
return_array <- TRUE
if (is.null(data_array)) {
return_array <- FALSE
if (length(dim(lons)) == 1) {
array_dims <- c(length(lats), length(lons))
new_lon_dim_name <- 'lon'
new_lat_dim_name <- 'lat'
if (!is.null(names(dim(lons)))) {
if (any(known_lon_names %in% names(dim(lons)))) {
new_lon_dim_name <- known_lon_names[which(known_lon_names %in% names(dim(lons)))[1]]
}
if (!is.null(names(dim(lats)))) {
if (any(known_lat_names %in% names(dim(lats)))) {
new_lat_dim_name <- known_lat_names[which(known_lat_names %in% names(dim(lats)))[1]]
}
}
names(array_dims) <- c(new_lat_dim_name, new_lon_dim_name)
} else { # irregular
array_dims <- dim(lons)
if (is.null(names(array_dims))) {
new_lon_dim_name <- 'i'
new_lat_dim_name <- 'j'
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
data_array <- array(as.numeric(NA), array_dims)
}
if (!(is.logical(data_array) || is.numeric(data_array)) || !is.array(data_array)) {
stop("Parameter 'data_array' must be a numeric array.")
}
if (is.null(names(dim(data_array)))) {
stop("Parameter 'data_array' must have named dimensions.")
}
lon_dim <- which(known_lon_names %in% names(dim(data_array)))
if (length(lon_dim) < 1) {
stop("Could not find a known longitude dimension name in the provided 'data_array'.")
}
if (length(lon_dim) > 1) {
stop("Found more than one known longitude dimension names in the provided 'data_array'.")
}
lon_dim <- known_lon_names[lon_dim]
lat_dim <- which(known_lat_names %in% names(dim(data_array)))
if (length(lat_dim) < 1) {
stop("Could not find a known latitude dimension name in the provided 'data_array'.")
}
if (length(lat_dim) > 1) {
stop("Found more than one known latitude dimension name in the provided 'data_array'.")
}
lat_dim <- known_lat_names[lat_dim]
if (is.null(names(dim(lons)))) {
if (length(dim(lons)) == 1) {
names(dim(lons)) <- lon_dim
} else {
stop("Parameter 'lons' must be provided with dimension names.")
}
} else {
if (!(lon_dim %in% names(dim(lons)))) {
stop("Parameter 'lon' must have the same longitude dimension name as the 'data_array'.")
}
if (length(dim(lons)) > 1 && !(lat_dim %in% names(dim(lons)))) {
stop("Parameter 'lon' must have the same latitude dimension name as the 'data_array'.")
}
}
if (is.null(names(dim(lats)))) {
if (length(dim(lats)) == 1) {
names(dim(lats)) <- lat_dim
} else {
stop("Parameter 'lats' must be provided with dimension names.")
}
} else {
if (!(lat_dim %in% names(dim(lats)))) {
stop("Parameter 'lat' must have the same latitude dimension name as the 'data_array'.")
}
if (length(dim(lats)) > 1 && !(lon_dim %in% names(dim(lats)))) {
stop("Parameter 'lat' must have the same longitude dimension name as the 'data_array'.")
}
}
lons_attr_bk <- attributes(lons)
if (is.null(lons_attr_bk)) {
lons_attr_bk <- list()
}
lats_attr_bk <- attributes(lats)
if (is.null(lats_attr_bk)) {
lats_attr_bk <- list()
}
if (length(attr(lons, 'variables')) == 0) {
new_metadata <- list(list())
if (length(dim(lons)) == 1) {
names(new_metadata) <- lon_dim
} else {
names(new_metadata) <- paste0(lon_dim, '_var')
}
attr(lons, 'variables') <- new_metadata
}
if (!('units' %in% names(attr(lons, 'variables')[[1]]))) {
new_metadata <- attr(lons, 'variables')
#names(new_metadata)[1] <- lon_dim
new_metadata[[1]][['units']] <- 'degrees_east'
attr(lons, 'variables') <- new_metadata
}
if (length(attr(lats, 'variables')) == 0) {
new_metadata <- list(list())
if (length(dim(lats)) == 1) {
names(new_metadata) <- lat_dim
} else {
names(new_metadata) <- paste0(lat_dim, '_var')
}
attr(lats, 'variables') <- new_metadata
}
if (!('units' %in% names(attr(lats, 'variables')[[1]]))) {
new_metadata <- attr(lats, 'variables')
#names(new_metadata)[1] <- lat_dim
new_metadata[[1]][['units']] <- 'degrees_north'
attr(lats, 'variables') <- new_metadata
}
# Check grid.
if (!is.character(grid)) {
stop("Parameter 'grid' must be a character string specifying a ",
"target CDO grid, 'rXxY' or 'tRESgrid', or a path to another ",
"NetCDF file.")
}
if (grepl('^r[0-9]{1,}x[0-9]{1,}$', grid)) {
grid_type <- 'regular'
grid_lons <- as.numeric(strsplit(strsplit(grid, 'x')[[1]][1], 'r')[[1]][2])
grid_lats <- as.numeric(strsplit(grid, 'x')[[1]][2])
} else if (grepl('^t[0-9]{1,}grid$', grid)) {
grid_type <- 'gaussian'
grid_t <- as.numeric(strsplit(strsplit(grid, 'grid')[[1]][1], 't')[[1]][2])
grid_size <- .t2nlatlon(grid_t)
grid_lons <- grid_size[2]
grid_lats <- grid_size[1]
} else {
grid_type <- 'custom'
}
# Check method.
if (method %in% c('bil', 'bilinear')) {
method <- 'bil'
} else if (method %in% c('bic', 'bicubic')) {
method <- 'bic'
} else if (method %in% c('con', 'conservative')) {
method <- 'con'
} else if (method %in% c('dis', 'distance-weighted')) {
method <- 'dis'
} else if (method %in% 'nn') {
method <- 'nn'
} else if (method %in% 'laf') {
method <- 'laf'
} else if (method %in% 'con2') {
method <- 'con2'
stop("Unsupported CDO remap method. Only 'bilinear', 'bicubic', 'conservative', 'distance-weighted', 'nn', 'laf', and 'con2' are supported.")
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
}
# Check avoid_writes
if (!is.logical(avoid_writes)) {
stop("Parameter 'avoid_writes' must be a logical value.")
}
# Check crop
crop_tight <- FALSE
if (is.character(crop)) {
if (crop == 'tight') {
crop_tight <- TRUE
} else if (crop != 'preserve') {
stop("Parameter 'crop' can only take the values 'tight' or 'preserve' if specified as a character string.")
}
crop <- TRUE
}
if (is.logical(crop)) {
if (crop) {
if (length(lons) == 1 || length(lats) == 1) {
stop("CDORemap cannot remap if crop = TRUE and values for only one ",
"longitude or one latitude are provided. Either a) provide ",
"values for more than one longitude/latitude, b) explicitly ",
"specify the crop limits in the parameter crop, or c) set ",
"crop = FALSE.")
}
if (crop_tight) {
lon_extremes <- c(min(lons), max(lons))
lat_extremes <- c(min(lats), max(lats))
} else {
# Here we are trying to look for the extreme lons and lats in the data.
# Not the centers of the extreme cells, but the borders of the extreme cells.
###---
if (length(dim(lons)) == 1) {
tmp_lon <- lons
} else {
min_pos <- which(lons == min(lons), arr.ind = TRUE)[1, ]
tmp_lon <- Subset(lons, lat_dim, min_pos[which(names(dim(lons)) == lat_dim)], drop = 'selected')
}
i <- 1:length(tmp_lon)
degree <- min(3, length(i) - 1)
lon_model <- lm(tmp_lon ~ poly(i, degree))
lon_extremes <- c(NA, NA)
left_is_min <- FALSE
right_is_max <- FALSE
if (which.min(tmp_lon) == 1) {
left_is_min <- TRUE
prev_lon <- predict(lon_model, data.frame(i = 0))
first_lon_cell_width <- (tmp_lon[1] - prev_lon)
# The signif is needed because cdo sellonlatbox crashes with too many digits
lon_extremes[1] <- tmp_lon[1] - first_lon_cell_width / 2
} else {
lon_extremes[1] <- min(tmp_lon)
}
if (which.max(tmp_lon) == length(tmp_lon)) {
right_is_max <- TRUE
next_lon <- predict(lon_model, data.frame(i = length(tmp_lon) + 1))
last_lon_cell_width <- (next_lon - tmp_lon[length(tmp_lon)])
lon_extremes[2] <- tmp_lon[length(tmp_lon)] + last_lon_cell_width / 2
} else {
lon_extremes[2] <- max(tmp_lon)
}
# Adjust the crop window if possible in order to keep lons from 0 to 360
# or from -180 to 180 when the extremes of the cropped window are contiguous.
if (right_is_max) {
if (lon_extremes[1] < -180) {
if (!((lon_extremes[2] < 180) && !((180 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
lon_extremes[1] <- -180
lon_extremes[2] <- 180
}
} else if (lon_extremes[1] < 0) {
if (!((lon_extremes[2] < 360) && !((360 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
lon_extremes[1] <- 0
lon_extremes[2] <- 360
}
}
}
if (left_is_min) {
if (lon_extremes[2] > 360) {
if (!((lon_extremes[1] > 0) && !(lon_extremes[1] <= first_lon_cell_width / 2))) {
lon_extremes[1] <- 0
lon_extremes[2] <- 360
}
} else if (lon_extremes[2] > 180) {
if (!((lon_extremes[1] > -180) && !((180 + lon_extremes[1]) <= first_lon_cell_width / 2))) {
lon_extremes[1] <- -180
lon_extremes[2] <- 180
}
}
}
## lon_extremes <- signif(lon_extremes, 5)
## lon_extremes <- lon_extremes + 0.00001
###---
if (length(dim(lats)) == 1) {
tmp_lat <- lats
} else {
min_pos <- which(lats == min(lats), arr.ind = TRUE)[1, ]
tmp_lat <- Subset(lats, lon_dim, min_pos[which(names(dim(lats)) == lon_dim)], drop = 'selected')
}
i <- 1:length(tmp_lat)
degree <- min(3, length(i) - 1)
lat_model <- lm(tmp_lat ~ poly(i, degree))
lat_extremes <- c(NA, NA)
if (which.min(tmp_lat) == 1) {
prev_lat <- predict(lat_model, data.frame(i = 0))
lat_extremes[1] <- tmp_lat[1] - (tmp_lat[1] - prev_lat) / 2
} else {
lat_extremes[1] <- min(tmp_lat)
}
if (which.max(tmp_lat) == length(tmp_lat)) {
next_lat <- predict(lat_model, data.frame(i = length(tmp_lat) + 1))
lat_extremes[2] <- tmp_lat[length(tmp_lat)] + (next_lat - tmp_lat[length(tmp_lat)]) / 2
} else {
lat_extremes[2] <- max(tmp_lat)
}
## lat_extremes <- signif(lat_extremes, 5)
# Adjust crop window
if (lat_extremes[1] < -90) {
lat_extremes[1] <- -90
} else if (lat_extremes[1] > 90) {
lat_extremes[1] <- 90
}
if (lat_extremes[2] < -90) {
lat_extremes[2] <- -90
} else if (lat_extremes[2] > 90) {
lat_extremes[2] <- 90
}
###---
}
}
} else if (is.numeric(crop)) {
if (length(crop) != 4) {
stop("Paramrter 'crop' must be a logical value or a numeric vector of length 4: c(western border, eastern border, southern border, northern border.")
} else {
lon_extremes <- crop[1:2]
lat_extremes <- crop[3:4]
crop <- TRUE
}
} else {
stop("Parameter 'crop' must be a logical value or a numeric vector.")
}
# Check force_remap
if (!is.logical(force_remap)) {
stop("Parameter 'force_remap' must be a logical value.")
}
# Check write_dir
if (!is.character(write_dir)) {
stop("Parameter 'write_dir' must be a character string.")
}
if (!dir.exists(write_dir)) {
stop("Parameter 'write_dir' must point to an existing directory.")
}
# if (!is.null(mask)) {
# if (!is.numeric(mask) || !is.array(mask)) {
# stop("Parameter 'mask' must be a numeric array.")
# }
# if (length(dim(mask)) != 2) {
# stop("Parameter 'mask' must have two dimensions.")
# }
# if (is.null(names(dim(mask)))) {
# if (dim(data_array)[lat_dim] == dim(data_array)[lon_dim]) {
# stop("Cannot disambiguate which is the longitude dimension of ",
# "the provided 'mask'. Provide it with dimension names.")
# }
# names(dim(mask)) <- c('', '')
# found_lon_dim <- which(dim(mask) == dim(data_array)[lon_dim])
# if (length(found_lon_dim) < 0) {
# stop("The dimension sizes of the provided 'mask' do not match ",
# "the spatial dimension sizes of the array to interpolate.")
# } else {
# names(dim(mask)[found_lon_dim]) <- lon_dim
# }
# found_lat_dim <- which(dim(mask) == dim(data_array)[lat_dim])
# if (length(found_lat_dim) < 0) {
# stop("The dimension sizes of the provided 'mask' do not match ",
# "the spatial dimension sizes of the array to interpolate.")
# } else {
# names(dim(mask)[found_lat_dim]) <- lat_dim
# }
# }
# lon_position <- which(names(dim(data_array)) == lon_dim)
# lat_position <- which(names(dim(data_array)) == lat_dim)
# if (lon_position > lat_position) {
# if (names(dim(mask))[1] == lon_dim) {
# mask <- t(mask)
# }
# } else {
# if (names(dim(mask))[1] == lat_dim) {
# mask <- t(mask)
# }
# }
# ## TODO: Apply mask!!! Preserve attributes
# }
# Check if interpolation can be skipped.
interpolation_needed <- TRUE
if (!force_remap) {
if (!(grid_type == 'custom')) {
if (length(lons) == grid_lons && length(lats) == grid_lats) {
if (grid_type == 'regular') {
if (.isRegularVector(lons) && .isRegularVector(lats)) {
interpolation_needed <- FALSE
}
} else if (grid_type == 'gaussian') {
# TODO: improve this check. Gaussian quadrature should be used.
if (.isRegularVector(lons) && !.isRegularVector(lats)) {
interpolation_needed <- FALSE
}
}
}
}
}
found_lons <- lons
found_lats <- lats
if (interpolation_needed) {
if (nchar(Sys.which('cdo')[1]) < 1) {
stop("CDO must be installed in order to use the .CDORemap.")
}
cdo_version <- as.numeric_version(
strsplit(suppressWarnings(system2("cdo", args = '-V', stderr = TRUE))[[1]], ' ')[[1]][5]
)
.warning(paste0("CDORemap: Using CDO version ", cdo_version, "."))
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
if ((cdo_version >= as.numeric_version('1.7.0')) && (method == 'con')) {
method <- 'ycon'
}
# CDO takes arrays of 3 dimensions or 4 if one of them is unlimited.
# The unlimited dimension can only be the left-most (right-most in R).
# There are no restrictions for the dimension names or variable names.
# The longitude and latitude are detected by their units.
# There are no restrictions for the order of the limited dimensions.
# The longitude/latitude variables and dimensions must have the same name.
# The procedure consists in:
# - take out the array metadata
# - be aware of var dimension (replacing the dimension names would do).
# - take arrays of 4 dimensions always if possible
# - make the last dimension unlimited when saving to netcdf
# - if the last dimension is lon or lat, either reorder the array and
# then reorder back or iterate over the dimensions at the right
# side of lon AND lat.
# If the input array has more than 4 dimensions, it is needed to
# run CDO on each sub-array of 4 dimensions because it can handle
# only up to 4 dimensions. The shortest dimensions are chosen to
# iterate over.
is_irregular <- FALSE
if (length(dim(lats)) > 1 && length(dim(lons)) > 1) {
is_irregular <- TRUE
}
attribute_backup <- attributes(data_array)
other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
permutation <- NULL
unlimited_dim <- NULL
dims_to_iterate <- NULL
total_slices <- 1
other_dims_per_chunk <- ifelse(is_irregular, 1, 2) # 4 (the maximum accepted by CDO) - 2 (lon, lat) = 2.
if (length(other_dims) > 1 || (length(other_dims) > 0 && (is_irregular))) {
if (!(length(dim(data_array)) %in% other_dims)) {
if (avoid_writes || is_irregular) {
dims_mod <- dim(data_array)
dims_mod[which(names(dim(data_array)) %in%
c(lon_dim, lat_dim))] <- 0
dim_to_move <- which.max(dims_mod)
permutation <- (1:length(dim(data_array)))[-dim_to_move]
permutation <- c(permutation, dim_to_move)
permutation_back <- sort(permutation, index.return = TRUE)$ix
dim_backup <- dim(data_array)
data_array <- aperm(data_array, permutation)
dim(data_array) <- dim_backup[permutation]
other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
} else {
# We allow only lon, lat and 1 more dimension per chunk, so
# CDO has no restrictions in the order.
other_dims_per_chunk <- 1
}
}
other_dims_ordered_by_size <- other_dims[sort(dim(data_array)[other_dims], index.return = TRUE)$ix]
dims_to_iterate <- sort(head(other_dims_ordered_by_size, length(other_dims) - other_dims_per_chunk))
if (length(dims_to_iterate) == 0) {
dims_to_iterate <- NULL
} else {
slices_to_iterate <- array(1:prod(dim(data_array)[dims_to_iterate]),
dim(data_array)[dims_to_iterate])
total_slices <- prod(dim(slices_to_iterate))
}
if ((other_dims_per_chunk > 1) || (other_dims_per_chunk > 0 && is_irregular)) {
unlimited_dim <- tail(sort(tail(other_dims_ordered_by_size, other_dims_per_chunk)), 1)
#unlimited_dim <- tail(other_dims)
}
}
result_array <- NULL
lon_pos <- which(names(dim(data_array)) == lon_dim)
lat_pos <- which(names(dim(data_array)) == lat_dim)
dim_backup <- dim(data_array)
attributes(data_array) <- NULL
dim(data_array) <- dim_backup
names(dim(data_array)) <- paste0('dim', 1:length(dim(data_array)))
names(dim(data_array))[c(lon_pos, lat_pos)] <- c(lon_dim, lat_dim)
if (!is.null(unlimited_dim)) {
# This will make ArrayToNc create this dim as unlimited.
names(dim(data_array))[unlimited_dim] <- 'time'
# create time variable. The value is random since CDORemap() doesn't support time remapping now and we just want to avoid cdo warning
time_attr <- array(c(1:dim(data_array)[unlimited_dim]), dim = c(dim(data_array)[unlimited_dim]))
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
}
if (length(dim(lons)) == 1) {
names(dim(lons)) <- lon_dim
}
if (length(dim(lats)) == 1) {
names(dim(lats)) <- lat_dim
}
if (length(dim(lons)) > 1) {
lon_var_name <- paste0(lon_dim, '_var')
} else {
lon_var_name <- lon_dim
}
if (length(dim(lats)) > 1) {
lat_var_name <- paste0(lat_dim, '_var')
} else {
lat_var_name <- lat_dim
}
if (is_irregular) {
metadata <- list(list(coordinates = paste(lon_var_name, lat_var_name)))
names(metadata) <- 'var'
attr(data_array, 'variables') <- metadata
}
names(attr(lons, 'variables')) <- lon_var_name
names(attr(lats, 'variables')) <- lat_var_name
if (!is.null(attr(lons, 'variables')[[1]][['dim']])) {
attr(lons, 'variables')[[1]][['dim']] <- NULL
}
if (!is.null(attr(lats, 'variables')[[1]][['dim']])) {
attr(lats, 'variables')[[1]][['dim']] <- NULL
}
lons_lats_taken <- FALSE
for (i in 1:total_slices) {
tmp_file <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
tmp_file2 <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
if (!is.null(dims_to_iterate)) {
slice_indices <- which(slices_to_iterate == i, arr.ind = TRUE)
subset <- Subset(data_array, dims_to_iterate, as.list(slice_indices), drop = 'selected')
# Fix issue 259, curvilinear grid, the order of the dimensions in slices and
# coordinates needs to match
if (is_irregular) {
pos_lon <- which(names(dim(subset)) == lon_dim)
pos_lat <- which(names(dim(subset)) == lat_dim)
pos_lon_dim_in_lons <- which(names(dim(lons)) == lon_dim)
pos_lat_dim_in_lons <- which(names(dim(lons)) == lat_dim)
if ((pos_lon > pos_lat && pos_lon_dim_in_lons < pos_lat_dim_in_lons) ||
(pos_lon < pos_lat && pos_lon_dim_in_lons > pos_lat_dim_in_lons)) {
new_pos <- 1:length(dim(subset))
new_pos[pos_lon] <- pos_lat
new_pos[pos_lat] <- pos_lon
subset <- .aperm2(subset, new_pos)
}
# The unlimited dimension should be placed in the last position
if ('time' %in% names(dim(subset)) &&
which(names(dim(subset)) == 'time') != length(dim(subset))) {
new_pos <- 2:length(dim(subset))
new_pos[length(dim(subset))] <- 1
subset <- .aperm2(subset, new_pos)
}
}
# dims_before_crop <- dim(subset)
# Make sure subset goes along with metadata
if (is.null(unlimited_dim)) {
easyNCDF::ArrayToNc(setNames(list(subset, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
} else {
easyNCDF::ArrayToNc(setNames(list(subset, lons, lats, time_attr), c('var', lon_var_name, lat_var_name, 'time')), tmp_file)
}
if (is_irregular) {
pos_lon <- which(names(dim(data_array)) == lon_dim)
pos_lat <- which(names(dim(data_array)) == lat_dim)
pos_lon_dim_in_lons <- which(names(dim(lons)) == lon_dim)
pos_lat_dim_in_lons <- which(names(dim(lons)) == lat_dim)
if ((pos_lon > pos_lat && pos_lon_dim_in_lons < pos_lat_dim_in_lons) ||
(pos_lon < pos_lat && pos_lon_dim_in_lons > pos_lat_dim_in_lons)) {
new_pos <- 1:length(dim(data_array))
new_pos[pos_lon] <- pos_lat
new_pos[pos_lat] <- pos_lon
data_array <- .aperm2(data_array, new_pos)
}
}
# dims_before_crop <- dim(data_array)
if (is.null(unlimited_dim)) {
easyNCDF::ArrayToNc(setNames(list(data_array, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
} else {
easyNCDF::ArrayToNc(setNames(list(data_array, lons, lats, time_attr), c('var', lon_var_name, lat_var_name, 'time')), tmp_file)
}
}
sellonlatbox <- ''
if (crop) {
sellonlatbox <- paste0('sellonlatbox,', format(lon_extremes[1], scientific = FALSE),
',', format(lon_extremes[2], scientific = FALSE),
',', format(lat_extremes[1], scientific = FALSE),
',', format(lat_extremes[2], scientific = FALSE), ' -')
}
err <- try({
system(paste0("cdo -s ", sellonlatbox, "remap", method, ",", grid, " ", tmp_file, " ", tmp_file2), ignore.stdout = T, ignore.stderr = T)
})
file.remove(tmp_file)
stop("CDO remap failed. Possible problem: parameter 'grid'.")
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
}
ncdf_remapped <- nc_open(tmp_file2)
if (!lons_lats_taken) {
found_dim_names <- sapply(ncdf_remapped$var$var$dim, '[[', 'name')
found_lon_dim <- found_dim_names[which(found_dim_names %in% .KnownLonNames())[1]]
found_lat_dim <- found_dim_names[which(found_dim_names %in% .KnownLatNames())[1]]
found_lon_dim_size <- length(ncdf_remapped$dim[[found_lon_dim]]$vals)
found_lat_dim_size <- length(ncdf_remapped$dim[[found_lat_dim]]$vals)
found_var_names <- names(ncdf_remapped$var)
found_lon_var_name <- which(found_var_names %in% .KnownLonNames())
found_lat_var_name <- which(found_var_names %in% .KnownLatNames())
if (length(found_lon_var_name) > 0) {
found_lon_var_name <- found_var_names[found_lon_var_name[1]]
} else {
found_lon_var_name <- NULL
}
if (length(found_lat_var_name) > 0) {
found_lat_var_name <- found_var_names[found_lat_var_name[1]]
} else {
found_lat_var_name <- NULL
}
if (length(found_lon_var_name) > 0) {
found_lons <- ncvar_get(ncdf_remapped, found_lon_var_name,
collapse_degen = FALSE)
} else {
found_lons <- ncdf_remapped$dim[[found_lon_dim]]$vals
dim(found_lons) <- found_lon_dim_size
}
if (length(found_lat_var_name) > 0) {
found_lats <- ncvar_get(ncdf_remapped, found_lat_var_name,
collapse_degen = FALSE)
} else {
found_lats <- ncdf_remapped$dim[[found_lat_dim]]$vals
dim(found_lats) <- found_lat_dim_size
}
if (length(dim(lons)) == length(dim(found_lons))) {
new_lon_name <- lon_dim
} else {
new_lon_name <- found_lon_dim
}
if (length(dim(lats)) == length(dim(found_lats))) {
new_lat_name <- lat_dim
} else {
new_lat_name <- found_lat_dim
}
if (length(dim(found_lons)) > 1) {
if (which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lon_dim) <
which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lat_dim)) {
names(dim(found_lons)) <- c(new_lon_name, new_lat_name)
} else {
names(dim(found_lons)) <- c(new_lat_name, new_lon_name)
}
} else {
names(dim(found_lons)) <- new_lon_name
}
if (length(dim(found_lats)) > 1) {
if (which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lon_dim) <
which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lat_dim)) {
names(dim(found_lats)) <- c(new_lon_name, new_lat_name)
} else {
names(dim(found_lats)) <- c(new_lat_name, new_lon_name)
}
} else {
names(dim(found_lats)) <- new_lat_name
}
lons_lats_taken <- TRUE
}
if (!is.null(dims_to_iterate)) {
if (is.null(result_array)) {
if (return_array) {
new_dims <- dim(data_array)
new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
lon_pos <- which(names(new_dims) == lon_dim)
lat_pos <- which(names(new_dims) == lat_dim)
# Fix issue 259, expected order from CDO output is lon lat
# If is irregular, lat and lon position need to be checked:
if (is_irregular) {
if (lon_pos > lat_pos) {
new_pos <- 1:length(new_dims)
new_pos[lon_pos] <- lat_pos
new_pos[lat_pos] <- lon_pos
new_dims <- new_dims[new_pos]
}
}
result_array <- array(dim = new_dims)
store_indices <- as.list(rep(TRUE, length(dim(result_array))))
}
}
if (return_array) {
store_indices[dims_to_iterate] <- as.list(slice_indices)
# If is irregular, the order of dimenesions in result_array and file may be different and need to be checked before reading the temporal file:
if (is_irregular) {
test_dims <- dim(ncvar_get(ncdf_remapped, 'var',
collapse_degen = FALSE))
test_dims <- test_dims[which(test_dims > 1)]
pos_test_dims <- match(dim(result_array), test_dims)
if (is.unsorted(pos_test_dims, na.rm = TRUE)) {
# pos_new_dims is used later in the code. Don't overwrite
pos_new_dims <- 1:length(dim(result_array))
pos_new_dims[which(!is.na(pos_test_dims))] <-
match(test_dims, dim(result_array))
backup_result_array_dims <- dim(result_array)
dim(result_array) <- dim(result_array)[pos_new_dims]
}
}
result_array <- do.call('[<-', c(list(x = result_array), store_indices,
list(value = ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE))))
}
} else {
new_dims <- dim(data_array)
new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
if (is_irregular) {
lon_pos <- which(names(new_dims) == lon_dim)
lat_pos <- which(names(new_dims) == lat_dim)
if (lon_pos > lat_pos) {
new_pos <- 1:length(new_dims)
new_pos[lon_pos] <- lat_pos
new_pos[lat_pos] <- lon_pos
new_dims <- new_dims[new_pos]
}
}
result_array <- ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE)
dim(result_array) <- new_dims
}
nc_close(ncdf_remapped)
file.remove(tmp_file2)
}
# If is irregular, the order of dimension may need to be recovered after reading all the file:
if (is_irregular & (!is.null(dims_to_iterate))) {
if (exists('pos_new_dims')) {
pos_new_dims <- 1:length(dim(result_array))
dims_to_change <- match(backup_result_array_dims, dim(result_array))
pos_new_dims[which(dims_to_change != 1)] <-
dims_to_change[which(dims_to_change != 1)]
result_array <- .aperm2(result_array, pos_new_dims)
}
}
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
if (!is.null(permutation)) {
dim_backup <- dim(result_array)
result_array <- aperm(result_array, permutation_back)
dim(result_array) <- dim_backup[permutation_back]
}
# Now restore the metadata
result_is_irregular <- FALSE
if (length(dim(found_lats)) > 1 && length(dim(found_lons)) > 1) {
result_is_irregular <- TRUE
}
attribute_backup[['dim']][which(names(dim(result_array)) == lon_dim)] <- dim(result_array)[lon_dim]
attribute_backup[['dim']][which(names(dim(result_array)) == lat_dim)] <- dim(result_array)[lat_dim]
names(attribute_backup[['dim']])[which(names(dim(result_array)) == lon_dim)] <- new_lon_name
names(attribute_backup[['dim']])[which(names(dim(result_array)) == lat_dim)] <- new_lat_name
if (!is.null(attribute_backup[['variables']]) && (length(attribute_backup[['variables']]) > 0)) {
for (var in 1:length(attribute_backup[['variables']])) {
if (length(attribute_backup[['variables']][[var]][['dim']]) > 0) {
for (dim in 1:length(attribute_backup[['variables']][[var]][['dim']])) {
dim_name <- NULL
if ('name' %in% names(attribute_backup[['variables']][[var]][['dim']][[dim]])) {
dim_name <- attribute_backup[['variables']][[var]][['dim']][[dim]][['name']]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
} else {
attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
}
}
} else if (!is.null(names(attribute_backup[['variables']][[var]][['dim']]))) {
dim_name <- names(attribute_backup[['variables']][[var]][['dim']])[dim]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
} else {
names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
}
}
}
if (!is.null(dim_name)) {
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
new_vals <- found_lons[TRUE]
} else if (dim_name == lat_dim) {
new_vals <- found_lats[TRUE]
}
if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['len']])) {
attribute_backup[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
}
if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']])) {
if (!result_is_irregular) {
attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
} else {
attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
}
}
}
}
}
}
if (!is_irregular && result_is_irregular) {
attribute_backup[['coordinates']] <- paste(lon_var_name, lat_var_name)
} else if (is_irregular && !result_is_irregular) {
attribute_backup[['coordinates']] <- NULL
}
}
}
attributes(result_array) <- attribute_backup
lons_attr_bk[['dim']] <- dim(found_lons)
if (!is.null(lons_attr_bk[['variables']]) && (length(lons_attr_bk[['variables']]) > 0)) {
for (var in 1:length(lons_attr_bk[['variables']])) {
if (length(lons_attr_bk[['variables']][[var]][['dim']]) > 0) {
dims_to_remove <- NULL
for (dim in 1:length(lons_attr_bk[['variables']][[var]][['dim']])) {
dim_name <- NULL
if ('name' %in% names(lons_attr_bk[['variables']][[var]][['dim']][[dim]])) {
dim_name <- lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
} else {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
}
}
} else if (!is.null(names(lons_attr_bk[['variables']][[var]][['dim']]))) {
dim_name <- names(lons_attr_bk[['variables']][[var]][['dim']])[dim]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
} else {
names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
}
}
}
if (!is.null(dim_name)) {
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
new_vals <- found_lons[TRUE]
} else if (dim_name == lat_dim) {
new_vals <- found_lats[TRUE]
if (!result_is_irregular) {
dims_to_remove <- c(dims_to_remove, dim)
}
}
if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
}
if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']])) {
if (!result_is_irregular) {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
} else {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
}
}
}
}
}
if (length(dims_to_remove) > 1) {
lons_attr_bk[['variables']][[var]][['dim']] <- lons_attr_bk[['variables']][[var]][['dim']][[-dims_to_remove]]
}
}
}
names(lons_attr_bk[['variables']])[1] <- lon_var_name
lons_attr_bk[['variables']][[1]][['units']] <- 'degrees_east'
}
attributes(found_lons) <- lons_attr_bk
lats_attr_bk[['dim']] <- dim(found_lats)
if (!is.null(lats_attr_bk[['variables']]) && (length(lats_attr_bk[['variables']]) > 0)) {
for (var in 1:length(lats_attr_bk[['variables']])) {
if (length(lats_attr_bk[['variables']][[var]][['dim']]) > 0) {
dims_to_remove <- NULL
for (dim in 1:length(lats_attr_bk[['variables']][[var]][['dim']])) {
dim_name <- NULL
if ('name' %in% names(lats_attr_bk[['variables']][[var]][['dim']][[dim]])) {
dim_name <- lats_attr_bk[['variables']][[var]][['dim']][[dim]][['name']]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
} else {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
}
}
} else if (!is.null(names(lats_attr_bk[['variables']][[var]][['dim']]))) {
dim_name <- names(lats_attr_bk[['variables']][[var]][['dim']])[dim]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
} else {
names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
}
}
}
if (!is.null(dim_name)) {
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
new_vals <- found_lons[TRUE]
if (!result_is_irregular) {
dims_to_remove <- c(dims_to_remove, dim)
}
} else if (dim_name == lat_dim) {
new_vals <- found_lats[TRUE]
}
if (!is.null(lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) {
lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
}
if (!is.null(lats_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']])) {
if (!result_is_irregular) {
lats_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
} else {
lats_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
}
}
}
}
}
if (length(dims_to_remove) > 1) {
lats_attr_bk[['variables']][[var]][['dim']] <- lats_attr_bk[['variables']][[var]][['dim']][[-dims_to_remove]]
}
}
}
names(lats_attr_bk[['variables']])[1] <- lat_var_name
lats_attr_bk[['variables']][[1]][['units']] <- 'degrees_north'
}
attributes(found_lats) <- lats_attr_bk
}
list(data_array = if (return_array) {
if (interpolation_needed) {
result_array
} else {
data_array
}
} else {
NULL
},
lons = found_lons, lats = found_lats)
}