Earth Sciences

Earth Sciences Wiki

User Tools

Site Tools


working_groups:climate_prediction

Climate Prediction

Description of the area

The Climate Prediction group aims at developing regional and global climate prediction capability for time scales ranging from a few weeks to a few decades into the future (sub-seasonal to decadal climate prediction). This objective relies on expanding our understanding of the climate processes through a deep analysis of the strengths and weaknesses of state-of-the-art climate forecast systems in comparison with the most up-to-date observational datasets, and on exploiting these detailed analyses to refine the representation of climate processes in our climate forecast systems and as well as their initialization. Although our primary tool is the EC-Earth European climate model (http://www.ec-earth.org/), we also make frequent use of large multi-model databases made available in the context of cooperative international projects (CMIP, SPECS, NMME …) for process analysis. To achieve our objectives, we rely on a wide variety of expertise, both in terms of on climate processes and regions within our group: from the stratosphere down to the deep ocean and from tropical to polar latitudes, as well as on expertise on climate modelling and data assimilation. We have contributed in the past and plan to continue contributing to near-operational climate prediction exercises: on decadal (http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/decadal-fc) and on seasonal (http://www.arcus.org/search-program/seaiceoutlook) time scales.

Improvement of climate prediction systems: toward more realistic model processes

* Inclusion and/or testing in EC-Earth of new model components (biogeochemistry, vegetation, aerosols, new alternative sea ice model) or sub-grid cell parameterizations (ocean mixing, sea ice and snow cover surface scheme for albedo, soil hydrological cycling …) developed by other research centers to account for additional potential predictability sources.

* Tuning of sub-grid cell parameterisations (sea ice albedo, accretion and strength, ocean mixing and diffusion …) in EC-Earth to reduce the climate prediction drift and improve the prediction skill.

* Generation of ground-breaking high resolution climate predictions and assessment of the added-value from such a resolution increase (from 0.25 down to 0.08 degrees for the ocean, 40 to 25 km for the atmosphere) in terms of prediction drift and prediction skill.

Improvement of climate prediction systems: data assimilation and initialisation

* Use of a large set of ocean and atmospheric reanalyses (physical combination of observational data and model outputs) produced by other research centers and generation of in-house ensemble sea ice reconstructions to obtain a large variety of initial conditions (IC) for climate predictions to be compared in their merits and limitations.

* Comparison of the performance of various initialisation techniques (full-field and different variants of anomaly initialisation).

* Benefit assessment of weakly coupled observational data assimilation (through nudging and Ensemble Kalman Filter) in obtaining initial climate conditions.

Forecast quality assessment: attribution and sources of predictability

* Assessment of the state-of-the-art climate forecast performance from a large set of multi-model databases using multifaceted forecast quality assessment in the presence of climate drift for a large range of variables (continental temperatures and precipitation, tropical cyclones, weather regimes, climate variability modes, heat waves, ocean circulation, sea ice conditions …) to inform the Earth Sciences service group.

* Production of sensitivity experiments with EC-Earth (to new model components, different sources of initial conditions, radiative forcings, resolution, HPC plaform) to highlight sources of skill (land surface, soil moisture and sea ice initialization, volcanic, natural and anthropogenic aerosols, snow cover, ocean heat contents and transports …) and estimation of the contribution of these sources to the prediction skill.

* Detailed analysis of successful climate predictions from multi-model databases for attribution purposes (extreme events including droughts and heat waves, recent global warming hiatus, Arctic summer sea ice lows and Antarctic winter sea ice highs) and sensitivity experiments with EC-Earth to understand the physical mechanisms explaining these events.

Forecast quality assessment: diagnosis of climate forecast weaknesses

* Investigation of the mechanisms leading to climate prediction drift (through heat, salt, momentum, energy budgets …) and the relations between the drift and the prediction skill (through a statistical analysis).

* Investigation of the causes which can explain the failure of Earth systems to reproduce particular climate events in forecasts.

* Feedbacks toward climate forecast system development: information about the sources of model errors and suggestions of ways to improve the model quality.

List of people involved

Omar Bellprat

Personal page
Post-doctoral fellow
Interests: Seasonal prediction and attribution of extreme climate events
Interests: Verification of prediction systems, model and observational uncertainty

Louis-Philippe Caron

Personal page
Post-doctoral fellow
Interests: Predictability of tropical cyclones at seasonal and multi-annual timescale
Interests: tropical cyclones, hurricanes, Atlantic variability and predictability

Markus Donat

Group co-leader
Interests: climate extremes, climate variability
Interests: Understanding driving mechanisms and predictability of climate extremes

Rubén Cruz García

PhD student
Interests: Sea ice, seasonal and interannual forecast.
Master Thesis: http://digibug.ugr.es/handle/10481/39110#.VnKkvzIgcWM

Neven S. Fučkar

Juan de la Cierva-incorporación postdoctoral fellow
Interests: climate dynamics and prediction, sea ice, ocean role in climate, intraseasonal-to-decadal predictions, statistical methods and bias correction

Javier Garcia-Serrano

Virginie Guemas

Personal page
Head of the climate prediction group
Ramon y Cajal Fellow (Highly competitive national grant : 2% success rate)
Interests: sea ice predictability, initialization, prediction, impact on the northern hemisphere climate, ocean predictability, global warming slowdown

Chloé Prodhomme

Post-Doc
website: http://www.researchgate.net/profile/Chloe_Prodhomme
Interests: Seasonal forecasting, Tropical Variability, soil moisture, extreme events, heatwave, high resolution

Eleftheria Exarchou

Post-Doc
Interests: Ocean modeller, seasonal forecast.

Danila Volpi

Post-doc.
Interests: Initialization of decadal predictions.
PhD thesis: https://www.dropbox.com/s/ivh0qpdasang1rf/Thesis.pdf?dl=0

Vladimir Lapin

Post-doc
Interests: initialization and data assimilation, sea ice, ocean tides and mixing

Martin Ménégoz

Personal page
Post-doc
Interests: Aerosols and snow cover in climate forecasts

François Massonnet

Personal page
Post-doc
Interests: Sea ice, data assimilation, polar prediction

Bianca Mezzina

PhD Student
Thesis (provisional) title: ENSO influence on the North Atlantic-European winter: mechanisms and implications for predictability
Interests: food, sci-fi, koalas

Yohan Ruprich-Robert

Marie Curie Post-Doc
Personal page
Focuses: Climate variability and predictability (mainly at interannual to multi-decadal timescales), large scale ocean and atmosphere dynamic processes, ocean-atmopshere interactions.

Valentina Sicardi

Post-doc
Interests: Ocean biogeochemistry

Martí Galí Tàpias

“La Caixa Junior Leader” Post-Doc
ResearchGate profile
ORCID profile
publons profile
Interests: ocean biogeochemistry, carbon cycle, plankton, sulfur cycle, biogenic aerosols, light-driven biogeochemistry, vertical mixing

Deborah Verfaillie

Post-Doc
Personal page
Interests: decadal climate prediction, forecast quality assessment, cryosphere-climate interactions (glaciers, snow cover), subantarctic and Antarctica


Juan Camilo Acosta Navarro

Juan de la Cierva Post Doc
Webpage: https://orcid.org/0000-0001-5375-0639
Interests: cryosphere-climate interactions, atmospheric dynamics, extreme events, sub-seasonal to seasonal prediction, climate model initialization, aerosol effects on climate.

Rachel White

Marie-Curie Post Doc
Personal page
Interests: atmospheric dynamics, Rossby waves (sources and propagation), extreme events, sub-seasonal to seasonal prediction, tropospheric jet variability, troposphere-stratosphere interactions

Joan Llort

Post Doc
Personal page
Interests: marine biogeochemistry, ocean meso- and submeso-scale dynamics, plankton, biogeochemical modelling, iron, carbon cycle, Southern Ocean

Etienne Tourigny

Post Doc
ORCID profile
Interests: carbon cycle, vegetation & wildfire modelling, climate change, climate prediction, generation of initial conditions



Aude Carreric

Post Doc
ResearchGate profile
ORCID profile
Interests: Inter-annual variability in the tropics, particularly ENSO and its diversity, Low-frequency variability of climatic modes, Air-sea interactions, Impact of climate change on large-scale dynamics

Carlos Delgado-Torres


PhD student
ORCID profile
Interests: Climate prediction, Climate Services, Weather regimes, Software development, Artificial Intelligence, Numerical weather prediction.

Collaborators

Constantin Ardilouze

Mathieu Boudreault

Lauriane Batte

Anna-Lena Deppenmeier

Ramiro Saurral

Luis Ricardo Lage Rodrigues

CV in Portuguese
Colaborator
Interests: climate predictability, forecast verification, multidisciplinary research

Reporting

working_groups/climate_prediction.txt · Last modified: 2020/09/17 10:12 by cdelgado